5 research outputs found

    Interferon Tau Alleviates Obesity-Induced Adipose Tissue Inflammation and Insulin Resistance by Regulating Macrophage Polarization

    Get PDF
    Chronic adipose tissue inflammation is a hallmark of obesity-induced insulin resistance and anti-inflammatory agents can benefit patients with obesity-associated syndromes. Currently available type I interferons for therapeutic immunomodulation are accompanied by high cytotoxicity and therefore in this study we have examined anti-inflammatory effects of interferon tau (IFNT), a member of the type I interferon family with low cellular toxicity even at high doses. Using a diet-induced obesity mouse model, we observed enhanced insulin sensitivity in obese mice administered IFNT compared to control mice, which was accompanied by a significant decrease in secretion of proinflammatory cytokines and elevated anti-inflammatory macrophages (M2) in adipose tissue. Further investigations revealed that IFNT is a potent regulator of macrophage activation that favors anti-inflammatory responses as evidenced by activation of associated surface antigens, production of anti-inflammatory cytokines, and activation of selective cell signaling pathways. Thus, our study demonstrates, for the first time, that IFNT can significantly mitigate obesity-associated systemic insulin resistance and tissue inflammation by controlling macrophage polarization, and thus IFNT can be a novel bio-therapeutic agent for treating obesity-associated syndromes and type 2 diabetes

    Oxidative stress and metabolic markers in pre- and postnatal polycystic ovary syndrome rat protocols

    No full text
    Lady Serrano Mujica,1 Alessandra Bridi,1,2 Ricardo Della Méa,1 Vitor Braga Rissi,1 Naiara Guarda,3 Rafael Noal Moresco,3 Melissa Orlandin Premaor,4 Alfredo Quites Antoniazzi,1 Paulo Bayard Dias Gonçalves,1 Fabio Vasconcellos Comim1,4 1Laboratory of Biotechnology and Animal Reproduction, BioRep, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, 2Department of Veterinary Medicine, University of São Paulo, São Paulo, 3Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, 4Department of Clinical Medicine, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil Background: Several studies have described an enhanced inflammatory status and oxidative stress balance disruption in women with polycystic ovary syndrome (PCOS). However, there is scarce information about redox markers in the blood of androgenized animal models. Here, we evaluated the serum/plasma oxidative stress marker and metabolic parameter characteristics of prenatal (PreN) and postnatal (PostN) androgenized rat models of PCOS. Materials and methods: For PreN androgenization (n=8), 2.5 mg of testosterone propionate was subcutaneously administered to dams at embryonic days 16, 17, and 18, whereas PostN androgenization (n=7) was accomplished by subcutaneously injecting 1.25 mg of testosterone propionate to animals at PostN day 5. A unique control group (n=8) was constituted for comparison. Results: Our results indicate that PostN group rats exhibited particular modifications in the oxidative stress marker, an increased plasma ferric-reducing ability of plasma, and an increased antioxidant capacity reflected by higher albumin serum levels. PostN animals also presented increased total cholesterol and triglyceride–glucose levels, suggesting severe metabolic disarrangement. Conclusion: Study findings indicate that changes in oxidative stress could be promoted by testosterone propionate exposure after birth, which is likely associated with anovulation and/or lipid disarrangement. Keywords: animal models of PCOS, oxidative stress, prenatal, postnata

    Oxidative stress and biochemical markers in prenatally androgenized sheep after neonatal treatment with GnRH agonist

    No full text
    Jandui Escariãoda Nóbrega,1 Joabel Tonelotto dos Santos,1 Lady K Serrano-Mujica,1 Guilherme Bochi,2 Rafael Noal Moresco,2 Vitor Braga Rissi,1 Werner Giehl Glanzner,1 Felipe W Langer,3 Alfredo Quites Antoniazzi,1 Paulo Bayard Dias Gonçalves,1 Melissa O Premaor,3 Fabio V Comim1,3 1Laboratory of Biotechnology and Animal Reproduction – BioRep, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil; 2Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil; 3Department of Clinical Medicine, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil Background: Disruption of the balance between the production of ROS and their removal through enzymatic and non-enzymatic (antioxidant) processes has been proposed as a new mechanism in the pathology of polycystic ovary syndrome (PCOS). Evidence from animal models of PCOS (prenatally androgenized sheep) has suggested that treatment with insulin sensitizers, but not antiandrogens, can reduce increases in ROS.Materials and methods: In the present study, we investigated the effects of neonatal treatment with a gonadotropin-releasing hormone (GnRH) agonist (leuprolide acetate) on prenatally androgenized sheep with testosterone propionate to determine its impact on oxidative stress molecules (ferric reducing antioxidant power [FRAP], advanced oxidation protein product [AOPP], nitric oxide [NOx], albumin) at 8, 12, and 18 months of age.Results: Androgenized ewes (but not leuprolide-treated ewes) showed reduced total cholesterol levels associated with a decrease in the ratio of visceral to subcutaneous adiposity (adjusted to abdominal area) as determined by computed tomography. In androgenized ewes at 12 months of age, an increase in subcutaneous fat and relative decrease in the visceral fat compartment did not affect the expression of REDOX markers. At 18 months of age, however, the levels of NOx metabolites decreased in androgenized animals, but remained close to normal in ewes subjected to neonatal treatment with leuprolide acetate. Other oxidative stress parameters (FRAP, AOPP, albumin) did not vary among groups.Conclusion: Our results demonstrate that the GnRH agonist leuprolide (as a single dose after birth) had weak effects on markers of the oxidative stress balance. Keywords: animal model of polycystic ovary syndrome, oxidative stress, gonadotropin-releasing hormone agonist, sheep, metabolis
    corecore