3 research outputs found

    Type I conventional dendritic cells and CD8+ T cells predict favorable clinical outcome of head and neck squamous cell carcinoma patients

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is one of the most common tumor entities worldwide, with human papillomavirus (HPV) infection contributing to cancer development. Conventional therapies achieve only limited efficiency, especially in recurrent or metastatic HNSCC. As the immune landscape decisively impacts the survival of patients and treatment efficacy, this study comprehensively investigated the immunological tumor microenvironment (TME) and its association with patient outcome, with special focus on several dendritic cell (DC) and T lymphocyte subpopulations. Therefore, formalin-fixed paraffin-embedded tumor samples of 56 HNSCC patients, who have undergone resection and adjuvant radiotherapy, were analyzed by multiplex immunohistochemistry focusing on the detailed phenotypic characterization and spatial distribution of DCs, CD8+ T cells, and T-helper cell subsets in different tumor compartments. Immune cell densities and proportions were correlated with clinical characteristics of the whole HNSCC cohort and different HPV- or hypoxia-associated subcohorts. Tumor stroma was highly infiltrated by plasmacytoid DCs and T lymphocytes. Among the T-helper cells and CD8+ T cells, stromal regulatory T cells and intraepithelial exhausted CD8+ T cells expressing programmed cell death protein-1 (PD-1+) and/or lymphocyte-activation gene-3 (LAG-3+) were the predominant phenotypes, indicating an immunosuppressive TME. HPV-associated tumors showed significantly higher infiltration of type I and type II conventional DCs (cDC1, cDC2) as well as several CD8+ T cell phenotypes including exhausted, activated, and proliferating T cells. On the contrary, tumors with hypoxia-associated gene signatures exhibited reduced infiltration for these immune cells. By multivariate Cox regression, immune-related prognostic factors were identified. Patient clusters defined by high infiltration of DCs and T lymphocytes combined with HPV positivity or low hypoxia showed significantly prolonged survival. Thereby, cDC1 and CD8+ T cells emerged as independent prognostic factors for local and distant recurrence. These results might contribute to the implementation of an immune cell infiltration score predicting HNSCC patients’ survival and such patient stratification might improve the design of future individualized radiochemo-(immuno)therapies

    The Immune Contexture of Liposarcoma and Its Clinical Implications

    No full text
    Simple Summary Liposarcomas (LPS) are malignancies arising from adipose tissue. Based on the histological appearance, five subtypes are distinguished: well-differentiated LPS, dedifferentiated LPS (DDLPS), myxoid LPS (MLPS), pleomorphic LPS, and myxoid pleomorphic LPS. Immune cells can infiltrate the tumor microenvironment (TME) of LPS and can either promote an efficient antitumor immune response or mediate immunosuppression paving the way for immune evasion of the tumor. The LPS subtypes display different TME characteristics and vary in regard to immune cell infiltration, ranging from the generally lowly infiltrated MLPS to the highly infiltrated DDLPS where immunological determinants predict response to novel antibody-based immunotherapy. Thus, immune cells in the TME can significantly affect response to therapy, disease progression, and patient survival. This review aims to decipher the immune contexture of LPS as well as its clinical association and highlights differences between the LPS subtypes that may have implications for the design of novel treatment strategies. Liposarcomas (LPS) are the most frequent malignancies in the soft tissue sarcoma family and consist of five distinctive histological subtypes, termed well-differentiated LPS, dedifferentiated LPS (DDLPS), myxoid LPS (MLPS), pleomorphic LPS, and myxoid pleomorphic LPS. They display variations in genetic alterations, clinical behavior, and prognostic course. While accumulating evidence implicates a crucial role of the tumor immune contexture in shaping the response to anticancer treatments, the immunological landscape of LPS is highly variable across different subtypes. Thus, DDLPS is characterized by a higher abundance of infiltrating T cells, yet the opposite was reported for MLPS. Interestingly, a recent study indicated that the frequency of pre-existing T cells in soft tissue sarcomas has a predictive value for immune checkpoint inhibitor (CPI) therapy. Additionally, B cells and tertiary lymphoid structures were identified as potential biomarkers for the clinical outcome of LPS patients and response to CPI therapy. Furthermore, it was demonstrated that macrophages, predominantly of M2 polarization, are frequently associated with poor prognosis. An improved understanding of the complex LPS immune contexture enables the design and refinement of novel immunotherapeutic approaches. Here, we summarize recent studies focusing on the clinicopathological, genetic, and immunological determinants of LPS

    Prognostic impact of the post-treatment T cell composition and spatial organization in soft tissue sarcoma patients treated with neoadjuvant hyperthermic radio(chemo)therapy

    Get PDF
    Soft tissue sarcomas (STS) form a heterogeneous group of tumors sharing a mesenchymal origin. Despite good local control of the disease, the occurrence of distant metastases often limits survival of STS patients with localized, high-risk tumors of the extremities. Accumulating evidence suggests a central role for the tumor immune microenvironment in determining the clinical outcome and response to therapy. Thus, it has been reported that STS patients with a high immune signature and especially presence of B cells and tertiary lymphoid structures display improved overall survival and response to checkpoint inhibitor treatment. Here, we explored the effect of curative multimodal therapy on the T cell landscape of STS using multiplex immunohistochemistry. We analyzed the phenotype, frequency, and spatial distribution of STS-infiltrating CD8+ T cells by staining for CD8, 4-1BB, Granzyme B, Ki67, PD-1, and LAG-3 as well as CD3+ T helper cells using a panel consisting of CD3, T-bet, GATA3, RORγT, FoxP3, and Ki67. All patients received neoadjuvant radiotherapy plus locoregional hyperthermia with or without chemotherapy. While the treatment-naïve biopsy sample allows an analysis of baseline T cell infiltration levels, both intra- and peritumoral areas of the matched resected tissue were analyzed to assess composition and spatial distribution of the T cell compartment and its therapeutic modulation. Generally, post-treatment tissues displayed lower frequencies of CD3+ and CD8+ T cells. Association with clinical data revealed that higher post-treatment frequencies of peritumoral and intratumoral CD3+ T cells and intratumoral PD-1+ CD8+ T cells were significantly associated with improved disease-free survival (DFS), while these densities had no prognostic significance in the biopsy. Upon spatial analysis, a high ratio of intratumoral to peritumoral CD8+ T cells emerged as an independent prognostic marker for longer DFS. These results indicate that the STS T cell landscape is altered by multimodal therapy and may influence the clinical outcome of patients. An enhanced understanding of the STS immune architecture and its modulation by neoadjuvant therapy may pave the way towards novel treatment modalities and improve the long-term clinical outcome of STS patients
    corecore