25 research outputs found

    Targeting eosinophils by active vaccination against interleukin-5 reduces basophil counts in horses with insect bite hypersensitivity in the 2nd year of vaccination

    Full text link
    Previously, virus-like particle (VLP)-based self-vaccinations targeting interleukin (IL)-5 or IL-31 have been suggested to treat equine insect bite hypersensitivity (IBH), a seasonal recurrent allergic dermatitis in horses. The IL-5-targeting equine vaccine significantly reduced blood eosinophil counts in horses, similar to human monoclonal antibodies targeting IL-5 or the IL-5 receptor alpha (IL-5Rα). Previous studies in humans have also reported an additional effect on reduction of basophil counts. The aim of the present study was to evaluate whether an equine anti-IL-5 vaccine affected blood basophil counts. Horses with IBH were followed in a 3-year trial consisting of a placebo administered in the 1st year, followed by vaccination using an equine (e)IL-5-VLP vaccine in the 2nd and 3rd years. There was a strong reduction in circulating eosinophil counts after vaccination against IL-5. Additionally, there were reduced basophil counts, but only in the 3rd year of the study, suggesting a bystander effect of the anti-IL-5 vaccine on basophil counts

    The Prospects of an Active Vaccine Against Asthma Targeting IL-5

    Get PDF
    Allergen-specific T helper type 2 (Th2) responses followed by eosinophilic inflammation of the lung are important causes of allergic asthma. Interleukin-5 (IL-5) is a master regulator of eosinophil differentiation as well as activation. Blocking IL-5 using monoclonal antibodies (mAbs) against IL-5 is a powerful way to improve asthmatic symptoms in patients with an eosinophilic component of the disease. We have previously shown that vaccination against IL-5 can abrogate eosinophilic inflammation of the lung in allergic mice. More recently, we have demonstrated that eosinophil-mediated skin disease in horses with insect bite hypersensitivity can be strongly reduced by vaccination against IL-5. Here we would like to propose the development of a similar vaccine for the treatment of asthma in humans

    Safety Profile of a Virus-Like Particle-Based Vaccine Targeting Self-Protein Interleukin-5 in Horses

    Get PDF
    Background: Insect bite hypersensitivity (IBH) is an eosinophilic allergic dermatitis of horses caused by type I/IVb reactions against mainly Culicoides bites. The vaccination of IBH-affected horses with equine IL-5 coupled to the Cucumber mosaic virus-like particle (eIL-5-CuMVTT) induces IL-5-specific auto-antibodies, resulting in a significant reduction in eosinophil levels in blood and clinical signs. Objective: the preclinical and clinical safety of the eIL-5-CuMVTT vaccine. Methods: The B cell responses were assessed by longitudinal measurement of IL-5- and CuMVTT-specific IgG in the serum and plasma of vaccinated and unvaccinated horses. Further, peripheral blood mononuclear cells (PBMCs) from the same horses were re-stimulated in vitro for the proliferation and IFN-γ production of specific T cells. In addition, we evaluated longitudinal kidney and liver parameters and the general blood status. An endogenous protein challenge was performed in murine IL-5-vaccinated mice. Results: The vaccine was well tolerated as assessed by serum and cellular biomarkers and also induced reversible and neutralizing antibody titers in horses and mice. Endogenous IL-5 stimulation was unable to re-induce anti-IL-5 production. The CD4+ T cells of vaccinated horses produced significantly more IFN-γ and showed a stronger proliferation following stimulation with CuMVTT as compared to the unvaccinated controls. Re-stimulation using E. coli-derived proteins induced low levels of IFNγ+CD4+ cells in vaccinated horses; however, no IFN-γ and proliferation were induced following the HEK-eIL-5 re-stimulation. Conclusions: Vaccination using eIL-5-CuMVTT induces a strong B-cell as well as CuMVTT-specific T cell response without the induction of IL-5-specific T cell responses. Hence, B-cell unresponsiveness against self-IL-5 can be bypassed by inducing CuMVTT carrier-specific T cells, making the vaccine a safe therapeutic option for IBH-affected horses

    Eosinophils Play a Surprising Leading Role in Recurrent Urticaria in Horses

    Get PDF
    Urticaria, independent of or associated with allergies, is commonly seen in horses and often shows a high reoccurrence rate. Managing these horses is discouraging, and efficient treatment options are lacking. Due to an incidental finding in a study on horses affected by insect bite hypersensitivity using the eosinophil-targeting eIL-5-CuMV-TT vaccine, we observed the prevention of reoccurring seasonal urticaria in four subsequent years with re-vaccination. In an exploratory case series of horses affected with non-seasonal urticaria, we aimed to investigate the role of eosinophils in urticaria. Skin punch biopsies for histology and qPCR of eosinophil associated genes were performed. Further, two severe, non-seasonal, recurrent urticaria-affected horses were vaccinated using eIL-5-CuMV-TT, and urticaria flare-up was followed up with re-vaccination for several years. Eotaxin-2, eotaxin-3, IL-5, CCR5, and CXCL10 showed high sensitivity and specificity for urticarial lesions, while eosinophils were present in 50% of histological tissue sections. The eIL-5-CuMV-TT vaccine reduced eosinophil counts in blood, cleared clinical signs of urticaria, and even prevented new episodes of urticaria in horses with non-seasonal recurrent urticaria. This indicates that eosinophils play a leading role in urticaria in horses, and targeting eosinophils offers an attractive new treatment option, replacing the use of corticosteroids

    Molecular mechanisms and treatment modalities in equine Culicoides hypersensitivity

    Get PDF
    Equine Culicoides hypersensitivity (CH) is the most common allergic condition in horses affecting the skin. This review focuses on immunopathology and molecular mechanisms of equine CH. The role of eosinophils is emphasized, as well as disease severity and the influence of long-term chronic allergen exposure on T helper (Th) 2 cells. Using current knowledge from human allergic disorders, similar effects are hypothesized in equine patients. Key aspects of CH diagnosis and treatment are discussed, focusing on allergen specific immunotherapy and allergen-independent approaches, such as targeting hypereosinophilia through interleukin-5 and allergic non-histaminic pruritus though interleukin-31

    Interleukin 31 in insect bite hypersensitivity – Alleviating clinical symptoms by active vaccination against itch

    Full text link
    Background Insect bite hypersensitivity (IBH) is the most common seasonal pruritic allergic dermatitis of horses occurring upon insect bites. In recent years, a major role for IL‐31 in allergic pruritus of humans, monkeys, dogs and mice was acknowledged. Objective Here, we investigate the role of IL‐31 in IBH of horses and developed a therapeutic vaccine against equine IL‐31 (eIL‐31). Methods IL‐31 levels were quantified in allergen‐stimulated PBMCs and skin punch biopsies of IBH lesions and healthy skin from IBH‐affected and healthy horses. The vaccine consisted of eIL‐31 covalently coupled to a virus‐like particle (VLP) derived from cucumber mosaic virus containing a tetanus toxoid universal T‐cell epitope (CuMVTT). Eighteen IBH‐affected horses were recruited and immunized with 300 μg of eIL‐31‐CuMVTT vaccine or placebo and IBH severity score was recorded. Results IL‐31 was increased in PBMCs and exclusively detectable in skin lesions of IBH‐affected horses. Vaccination against eIL‐31 reduced delta clinical scores when compared to previous untreated IBH season of the same horses and to placebo treated horses in the same year. The vaccine was well tolerated without safety concerns throughout the study. Conclusion TH2‐derived IL‐31 is involved in IBH pathology and accordingly the immunotherapeutic vaccination approach targeting IL‐31 alleviated clinical scores in affected horses

    Interleukin 31 in insect bite hypersensitivity - Alleviating clinical symptoms by active vaccination against itch.

    Get PDF
    BACKGROUND Insect bite hypersensitivity (IBH) is the most common seasonal pruritic allergic dermatitis of horses occurring upon insect bites. In recent years, a major role for IL-31 in allergic pruritus of humans, monkeys, dogs and mice was acknowledged. OBJECTIVE Here, we investigate the role of IL-31 in IBH of horses and developed a therapeutic vaccine against equine IL-31 (eIL-31). METHODS IL-31 levels were quantified in allergen-stimulated PBMCs and skin punch biopsies of IBH lesions and healthy skin from IBH-affected and healthy horses. The vaccine consisted of eIL-31 covalently coupled to a virus-like particle (VLP) derived from cucumber mosaic virus containing a tetanus toxoid universal T-cell epitope (CuMVTT ). Eighteen IBH-affected horses were recruited and immunized with 300 μg of eIL-31-CuMVTT vaccine or placebo and IBH severity score was recorded. RESULTS IL-31 was increased in PBMCs and exclusively detectable in skin lesions of IBH-affected horses. Vaccination against eIL-31 reduced delta clinical scores when compared to previous untreated IBH season of the same horses and to placebo treated horses in the same year. The vaccine was well tolerated without safety concerns throughout the study. CONCLUSION TH 2-derived IL-31 is involved in IBH pathology and accordingly the immunotherapeutic vaccination approach targeting IL-31 alleviated clinical scores in affected horses
    corecore