15,760 research outputs found

    Resummation of thrust distributions in DIS

    Get PDF
    We calculate the resummed distributions for the thrust in DIS in the limit T->1. Two variants of the thrust are considered: that normalised to Q/2, and that normalised to the energy in the current hemisphere. The results expanded to second order are compared to predictions from the Monte Carlo programs DISENT and DISASTER++. A prescription is given for matching the resummed expressions with the full fixed order calculation.Comment: 25 page

    The Neutrino mass matrix after Kamland and SNO salt enhanced results

    Full text link
    An updated analysis of all available neutrino oscillation evidence in Solar experiments including the latest SNO ES,CC and NC data (254d live time, NaCL enhanced efficiency) is presented. We obtain, for the fraction of active oscillating neutrinos: sin^2alpha=(\Phi_{NC}-\Phi_{CC})/(\Phi_{SSM}-\Phi_{CC})=0.94^{+0.0.065}_{-0.060} nearly 20\sigma from the pure sterile oscillation case. The fraction of oscillating sterile neutrinos cos^2\alpha \lsim 0.12 (1 sigma CL). At face value, these results might slightly favour the existence of a small sterile oscillating sector. In the framework of two active neutrino oscillations we determine individual neutrino mixing parameters and their errors we obtain Delta m^2= 7.01\pm 0.08 \times 10^{-5} eV^2, tan^2 theta=0.42^{+0.12}_{-0.07}. The main difference with previous analysis is a better resolution in parameter space. In particular the secondary region at larger mass differences (LMAII) is now excluded at 95% CL. The combined analysis of solar and Kamland data concludes that maximal mixing is not favoured at 4-5 sigma. This is not supported by the antineutrino reactor results alone. We estimate the individual elements of the two neutrino mass matrix, writing M^2=m^2 I+M_0^2, we obtain (1 sigma errors): M_0^2=10^{-5} eV^2\pmatrix{ 2.06^{+0.29}_{-0.31} & 3.15^{+0.29}_{-0.35} \cr 3.15^{+0.29}_{-0.35} & 4.60^{+0.56}_{-0.44} }

    Hamevol1.0: a C++ code for differential equations based on Runge-Kutta algorithm. An application to matter enhanced neutrino oscillation

    Full text link
    We present a C++ implementation of a fifth order semi-implicit Runge-Kutta algorithm for solving Ordinary Differential Equations. This algorithm can be used for studying many different problems and in particular it can be applied for computing the evolution of any system whose Hamiltonian is known. We consider in particular the problem of calculating the neutrino oscillation probabilities in presence of matter interactions. The time performance and the accuracy of this implementation is competitive with respect to the other analytical and numerical techniques used in literature. The algorithm design and the salient features of the code are presented and discussed and some explicit examples of code application are given.Comment: 18 pages, Late

    Solar neutrino experiments and Borexino perspectives

    Get PDF
    We present an updated analysis of all the data available about solar neutrinos, including the charged current SNO results. The best fit of the data is obtained in the Large Mixing Angle region, but different solutions are still possible. We also study the perspectives of Borexino and conclude that this experiment, with a parallel analysis of total rate and day-night asymmmetry, should be able to discriminate between the different possible solutions.Comment: 3 pages, Latex, talk given by V. Antonelli at TAUP 2001 Conferenc

    The solar neutrino puzzle: present situation and future scenarios

    Get PDF
    We present a short review of the existing evidence in favor of neutrino mass and neutrino oscillations which come from different kinds of experiments. We focus our attention in particular on solar neutrinos, presenting a global updated phenomenological analysis of all the available data and we comment on different possible future scenarios.Comment: 22 pp. Expanded version of the contribution to appear in the Proceedings of ``Les Rencontres de Physique de la Vallee d'Aoste'', February 200

    Solving the solar neutrino problem with kamLAND and BOREXINO

    Full text link
    We analyze the expected signals of two future neutrino experiments, kamLAND and BOREXINO. We show that with just these experiments, we will hopefully be able to determine which of the existing solutions to the solar neutrino problem is the real solution. We also analyze existing solar neutrino data and determine the best-fit points in the oscillation-parameter space finding that with the inclusion of SNO-charged current, the global-rates analysis gives a favored LMA solution with a goodness of fit (g.o.f) of just 32.63%, whereas the g.o.f of the SMA solution is 9.83%. Nonetheless, maximal and quasi-maximal mixing is not favored. If we include the Superkamiokande spectrum in our \chi^2 analysis, we obtain a LMA solution with a g.o.f. of 84.38%.Comment: 4 pages, 5 figures, Talk given at 37th Rencontres de Moriond on Electroweak Interactions and Unified Theories, Les Arcs, France, 9-16 Mar 200

    After Sno and Before Kamland: Present and Future of Solar and Reactor Neutrino Physics

    Get PDF
    We present a short review of the existing evidence in favor of neutrino mass and neutrino oscillations which come from different kinds of experiments. We focus our attention in particular on solar neutrinos, presenting a review of some recent analysis of all available neutrino oscillation evidence in Solar experiments including the recent SNOCCSNO CC and NCNC data. We present in detail the power of the reactor experiment KamLAND for discriminating existing solutions to the SNP and giving accurate information on neutrino masses and mixing angles.Comment: Expanded version of the contribution to appear in the Proceedings of ''Third Tropical Workshop on Particle Physics and Cosmology: Neutrinos, Branes and Cosmology (Puerto Rico, August 2002)'

    The resummed thrust distribution in DIS

    Get PDF
    We present preliminary results on the resummation of leading and next-to-leading logarithms for the thrust distribution in deep inelastic scattering. Our predictions, expanded to O(alpha_s^2), are compared to corresponding results from the Monte Carlo programs DISASTER++ and DISENT.Comment: 5 pages; talk presented by V. Antonelli at the UK Phenomenology Workshop on Collider Physics, September 1999, St. John's College, Durha
    • …
    corecore