82 research outputs found

    Assessing the extent and timing of chemosensory impairments during COVID-19 pandemic

    Get PDF
    Chemosensory impairments have been established as a specific indicator of COVID-19. They affect most patients and may persist long past the resolution of respiratory symptoms, representing an unprecedented medical challenge. Since the SARS-CoV-2 pandemic started, we now know much more about smell, taste, and chemesthesis loss associated with COVID-19. However, the temporal dynamics and characteristics of recovery are still unknown. Here, capitalizing on data from the Global Consortium for Chemosensory Research (GCCR) crowdsourced survey, we assessed chemosensory abilities after the resolution of respiratory symptoms in participants diagnosed with COVID-19 during the first wave of the pandemic in Italy. This analysis led to the identification of two patterns of chemosensory recovery, partial and substantial, which were found to be associated with differential age, degrees of chemosensory loss, and regional patterns. Uncovering the self-reported phenomenology of recovery from smell, taste, and chemesthetic disorders is the first, yet essential step, to provide healthcare professionals with the tools to take purposeful and targeted action to address chemosensory disorders and their severe discomfort

    Assessing the extent and timing of chemosensory impairments during COVID-19 pandemic

    Get PDF
    Chemosensory impairments have been established as a specific indicator of COVID-19. They affect most patients and may persist long past the resolution of respiratory symptoms, representing an unprecedented medical challenge. Since the SARS-CoV-2 pandemic started, we now know much more about smell, taste, and chemesthesis loss associated with COVID-19. However, the temporal dynamics and characteristics of recovery are still unknown. Here, capitalizing on data from the Global Consortium for Chemosensory Research (GCCR) crowdsourced survey, we assessed chemosensory abilities after the resolution of respiratory symptoms in participants diagnosed with COVID-19 during the first wave of the pandemic in Italy. This analysis led to the identification of two patterns of chemosensory recovery, partial and substantial, which were found to be associated with differential age, degrees of chemosensory loss, and regional patterns. Uncovering the self-reported phenomenology of recovery from smell, taste, and chemesthetic disorders is the first, yet essential step, to provide healthcare professionals with the tools to take purposeful and targeted action to address chemosensory disorders and their severe discomfort

    Recent smell loss is the best predictor of COVID-19 among individuals with recent respiratory symptoms

    Get PDF
    In a preregistered, cross-sectional study we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC=0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4<10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    More than smell - COVID-19 is associated with severe impairment of smell, taste, and chemesthesis

    Get PDF
    Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, generally lacked quantitative measurements, were mostly restricted to data from single countries. Here, we report the development, implementation and initial results of a multi-lingual, international questionnaire to assess self-reported quantity and quality of perception in three distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, 8 other, ages 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change+/-100) revealed a mean reduction of smell (-79.7+/- 28.7, mean+/- SD), taste (-69.0+/- 32.6), and chemesthetic (-37.3+/- 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell, but also affects taste and chemesthesis. The multimodal impact of COVID-19 and lack of perceived nasal obstruction suggest that SARS-CoV-2 infection may disrupt sensory-neural mechanisms.Additional co-authors: Veronica Pereda-Loth, Shannon B Olsson, Richard C Gerkin, Paloma Rohlfs Domínguez, Javier Albayay, Michael C. Farruggia, Surabhi Bhutani, Alexander W Fjaeldstad, Ritesh Kumar, Anna Menini, Moustafa Bensafi, Mari Sandell, Iordanis Konstantinidis, Antonella Di Pizio, Federica Genovese, Lina Öztürk, Thierry Thomas-Danguin, Johannes Frasnelli, Sanne Boesveldt, Özlem Saatci, Luis R. Saraiva, Cailu Lin, Jérôme Golebiowski, Liang-Dar Hwang, Mehmet Hakan Ozdener, Maria Dolors Guàrdia, Christophe Laudamiel, Marina Ritchie, Jan Havlícek, Denis Pierron, Eugeni Roura, Marta Navarro, Alissa A. Nolden, Juyun Lim, KL Whitcroft, Lauren R. Colquitt, Camille Ferdenzi, Evelyn V. Brindha, Aytug Altundag, Alberto Macchi, Alexia Nunez-Parra, Zara M. Patel, Sébastien Fiorucci, Carl M. Philpott, Barry C. Smith, Johan N Lundström, Carla Mucignat, Jane K. Parker, Mirjam van den Brink, Michael Schmuker, Florian Ph.S Fischmeister, Thomas Heinbockel, Vonnie D.C. Shields, Farhoud Faraji, Enrique Enrique Santamaría, William E.A. Fredborg, Gabriella Morini, Jonas K. Olofsson, Maryam Jalessi, Noam Karni, Anna D'Errico, Rafieh Alizadeh, Robert Pellegrino, Pablo Meyer, Caroline Huart, Ben Chen, Graciela M. Soler, Mohammed K. Alwashahi, Olagunju Abdulrahman, Antje Welge-Lüssen, Pamela Dalton, Jessica Freiherr, Carol H. Yan, Jasper H. B. de Groot, Vera V. Voznessenskaya, Hadar Klein, Jingguo Chen, Masako Okamoto, Elizabeth A. Sell, Preet Bano Singh, Julie Walsh-Messinger, Nicholas S. Archer, Sachiko Koyama, Vincent Deary, Hüseyin Yanik, Samet Albayrak, Lenka Martinec Novákov, Ilja Croijmans, Patricia Portillo Mazal, Shima T. Moein, Eitan Margulis, Coralie Mignot, Sajidxa Mariño, Dejan Georgiev, Pavan K. Kaushik, Bettina Malnic, Hong Wang, Shima Seyed-Allaei, Nur Yoluk, Sara Razzaghi, Jeb M. Justice, Diego Restrepo, Julien W Hsieh, Danielle R. Reed, Thomas Hummel, Steven D Munger, John E Haye

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    In Silico Molecular Study of Tryptophan Bitterness

    Full text link
    Tryptophan is an essential amino acid, required for the production of serotonin. It is the most bitter amino acid and its bitterness was found to be mediated by the bitter taste receptor TAS2R4. Di-tryptophan has a different selectivity profile and was found to activate three bitter taste receptors, whereas tri-tryptophan activated five TAS2Rs. In this work, the selectivity/promiscuity profiles of the mono-to-tri-tryptophans were explored using molecular modeling simulations to provide new insights into the molecular recognition of the bitter tryptophan. Tryptophan epitopes were found in all five peptide-sensitive TAS2Rs and the best tryptophan epitope was identified and characterized at the core of the orthosteric binding site of TAS2R4

    Beyond the Flavour: The Potential Druggability of Chemosensory G Protein-Coupled Receptors

    Full text link
    G protein-coupled receptors (GPCRs) belong to the largest class of drug targets. Approximately half of the members of the human GPCR superfamily are chemosensory receptors, including odorant receptors (ORs), trace amine-associated receptors (TAARs), bitter taste receptors (TAS2Rs), sweet and umami taste receptors (TAS1Rs). Interestingly, these chemosensory GPCRs (csGPCRs) are expressed in several tissues of the body where they are supposed to play a role in biological functions other than chemosensation. Despite their abundance and physiological/pathological relevance, the druggability of csGPCRs has been suggested but not fully characterized. Here, we aim to explore the potential of targeting csGPCRs to treat diseases by reviewing the current knowledge of csGPCRs expressed throughout the body and by analysing the chemical space and the drug-likeness of flavour molecules
    corecore