453 research outputs found
The subcellular localization of the ChoRE-binding protein, encoded by the Williams-Beuren syndrome critical region gene 14, is regulated by 14-3-3
The Williams-Beuren syndrome (WBS) is a contiguous gene syndrome caused by chromosomal rearrangements at chromosome band 7q11.23. Several endocrine phenotypes, in particular impaired glucose tolerance and silent diabetes, have been described for this clinically complex disorder. The WBSCR14 gene, one of the genes mapping to the WBS critical region, encodes a member of the basic-helix-loop-helix leucine zipper family of transcription factors, which dimerizes with the Max-like protein, Mlx. This heterodimeric complex binds and activates, in a glucose-dependent manner, carbohydrate response element (ChoRE) motifs in the promoter of lipogenic enzymes. We identified five novel WBSCR14-interacting proteins, four 14-3-3 isotypes and NIF3L1, which form a single polypeptide complex in mammalian cells. Phosphatase treatment abrogates the association between WBSCR14 and 14-3-3, as shown previously for multiple 14-3-3 interactors. WBSCR14 is exported actively from the nucleus through a CRM1-dependent mechanism. This translocation is contingent upon the ability to bind 14-3-3. Through this mechanism the 14-3-3 isotypes directly affect the WBSCR14:Mlx complexes, which activate the transcription of lipogenic gene
Three decades of the Human Genome Organization.
The Human Genome Organization (HUGO) was initially established in 1988 to help integrate international scientific genomic activity and to accelerate the diffusion of knowledge from the efforts of the human genome project. Its founding President was Victor McKusick. During the late 1980s and 1990s, HUGO organized lively gene mapping meetings to accurately place genes on the genome as chromosomes were being sequenced. With the completion of the Human Genome Project, HUGO went through some transitions and self-reflection. In 2020, HUGO (which hosts a large annual scientific meeting and comprises the renowned HUGO Gene Nomenclature Committee [HGNC], responsible for naming genes, and an outstanding Ethics Committee) was merged with the Human Genome Variation Society (HGVS; which defines the correct nomenclature for variation description) and the Human Variome Project (HVP; championed by the late Richard Cotton) into a single organization that is committed to assembling human genomic variation from all over the world. This consolidated effort, under a new Executive Board and seven focused committees, will facilitate efficient and effective communication and action to bring the benefits of increasing knowledge of genome diversity and biology to people all over the world
Identifying protein-coding genes in genomic sequences
A review of the main computational pipelines used to generate the human reference protein-coding gene sets
TNPO3 protects HIV-1 replication from CPSF6-mediated capsid stabilization in the host cell cytoplasm
BACKGROUND: Despite intensive investigation the mechanism by which HIV-1 reaches the host cell nucleus is unknown. TNPO3, a karyopherin mediating nuclear entry of SR-proteins, was shown to be required for HIV-1 infectivity. Some investigators have reported that TNPO3 promotes HIV-1 nuclear import, as would be expected for a karyopherin. Yet, an equal number of investigators have failed to obtain evidence that supports this model. Here, a series of experiments were performed to better elucidate the mechanism by which TNPO3 promotes HIV-1 infectivity.
RESULTS: To examine the role of TNPO3 in HIV-1 replication, the 2-LTR circles that are commonly used as a marker for HIV-1 nuclear entry were cloned after infection of TNPO3 knockdown cells. Potential explanation for the discrepancy in the literature concerning the effect of TNPO3 was provided by sequencing hundreds of these clones: a significant fraction resulted from autointegration into sites near the LTRs and therefore were not bona fide 2-LTR circles. In response to this finding, new techniques were developed to monitor HIV-1 cDNA, including qPCR reactions that distinguish 2-LTR circles from autointegrants, as well as massive parallel sequencing of HIV-1 cDNA. With these assays, TNPO3 knockdown was found to reduce the levels of 2-LTR circles. This finding was puzzling, though, since previous work has shown that the HIV-1 determinant for TNPO3-dependence is capsid (CA), an HIV-1 protein that forms a mega-dalton protein lattice in the cytoplasm. TNPO3 imports cellular splicing factors via their SR-domain. Attention was therefore directed towards CPSF6, an SR-protein that binds HIV-1 CA and inhibits HIV-1 nuclear import when the C-terminal SR-domain is deleted. The effect of 27 HIV-1 capsid mutants on sensitivity to TNPO3 knockdown was then found to correlate strongly with sensitivity to inhibition by a C-terminal deletion mutant of CPSF6 (R2 = 0.883, p \u3c 0.0001). TNPO3 knockdown was then shown to cause CPSF6 to accumulate in the cytoplasm. Mislocalization of CPSF6 to the cytoplasm, whether by TNPO3 knockdown, deletion of the CPSF6 nuclear localization signal, or by fusion of CPSF6 to a nuclear export signal, resulted in inhibition of HIV-1 replication. Additionally, targeting CPSF6 to the nucleus by fusion to a heterologous nuclear localization signal rescued HIV-1 from the inhibitory effects of TNPO3 knockdown. Finally, mislocalization of CPSF6 to the cytoplasm was associated with abnormal stabilization of the HIV-1 CA core.
CONCLUSION: TNPO3 promotes HIV-1 infectivity indirectly, by shifting the CA-binding protein CPSF6 to the nucleus, thus preventing the excessive HIV-1 CA stability that would otherwise result from cytoplasmic accumulation of CPSF6
A recurrent 14q32.2 microdeletion mediated by expanded TGG repeats
Nearly all recurrent microdeletion/duplication syndromes described to date are characterized by the presence of flanking low copy repeats that act as substrates for non-allelic homologous recombination (NAHR) leading to the loss, gain or disruption of dosage sensitive genes. We describe an identical 1.11 Mb heterozygous deletion of 14q32.2 including the DLK1/GTL2 imprinted gene cluster in two unrelated patients. In both patients, the deleted chromosome 14 was of paternal origin, and consistent with this both exhibit clinical features compatible with uniparental disomy (UPD) (14)mat. Using a high-resolution oligonucleotide array, we mapped the breakpoints of this recurrent deletion to large flanking (TGG)n tandem repeats, each approximately 500 bp in size and sharing ≥88% homology. These expanded (TGG)n motifs share features with known fragile sites and are predicted to form strong guanine quadruplex secondary structures. We suggest that this recurrent deletion is mediated either by NAHR between the TGG repeats, or alternatively results from their inherent instability and/or strong secondary structure. Our results define a recurrent microdeletion of the 14q32.2 imprinted gene cluster mediated by flanking (TGG)n repeats, identifying a novel mechanism of recurrent genomic rearrangement. Our observation that expanded repeats can act as catalysts for genomic rearrangement extends the role of triplet repeats in human disease, raising the possibility that similar repeat structures may act as substrates for pathogenic rearrangements genome-wid
Genetic and Epigenetic Regulation of Human lincRNA Gene Expression
Large intergenic noncoding RNAs (lincRNAs) are still poorly functionally characterized. We analyzed the genetic and epigenetic regulation of human lincRNA expression in the GenCord collection by using three cell types from 195 unrelated European individuals. We detected a considerable number of cis expression quantitative trait loci (cis-eQTLs) and demonstrated that the genetic regulation of lincRNA expression is independent of the regulation of neighboring protein-coding genes. lincRNAs have relatively more cis-eQTLs than do equally expressed protein-coding genes with the same exon number. lincRNA cis-eQTLs are located closer to transcription start sites (TSSs) and their effect sizes are higher than cis-eQTLs found for protein-coding genes, suggesting that lincRNA expression levels are less constrained than that of protein-coding genes. Additionally, lincRNA cis-eQTLs can influence the expression level of nearby protein-coding genes and thus could be considered as QTLs for enhancer activity. Enrichment of expressed lincRNA promoters in enhancer marks provides an additional argument for the involvement of lincRNAs in the regulation of transcription in cis. By investigating the epigenetic regulation of lincRNAs, we observed both positive and negative correlations between DNA methylation and gene expression (expression quantitative trait methylation [eQTMs]), as expected, and found that the landscapes of passive and active roles of DNA methylation in gene regulation are similar to protein-coding genes. However, lincRNA eQTMs are located closer to TSSs than are protein-coding gene eQTMs. These similarities and differences in genetic and epigenetic regulation between lincRNAs and protein-coding genes contribute to the elucidation of potential functions of lincRNAs
Genomic structure of a copy of the human TPTE gene which encompasses 87kb on the short arm of chromosome 21
Abstract.: The testis-expressed human TPTE is a putative transmembrane tyrosine phosphatase, probably involved in signal transduction pathways of the endocrine and/or the spermatogenetic function of the testis. TPTE was mapped to the pericentromeric region of human chromosomes 21 and 13, and to chromosomes 15, 22, and Y. It is unknown which of the TPTE copies are transcribed, contain intronic sequences, and/or have open reading frames. Here, in silico analysis of the genomic sequence of human chromosome 21 allowed the determination of the genomic structure of a copy of the TPTE gene. This copy consists of 24 exons and spans approximately 87kb. The mapping position of this copy of TPTE on the short arm of chromosome 21 was confirmed by FISH using the BAC 15L0C0 clone as a probe that contains almost the entire TPTE gene. This is the first description of the genomic sequence of a non-RNR gene on the short arm of human acrocentric chromosome
Comparative gene finding in chicken indicates that we are closing in on the set of multi-exonic widely expressed human genes
The recent availability of the chicken genome sequence poses the question of whether there are human protein-coding genes conserved in chicken that are currently not included in the human gene catalog. Here, we show, using comparative gene finding followed by experimental verification of exon pairs by RT-PCR, that the addition to the multi-exonic subset of this catalog could be as little as 0.2%, suggesting that we may be closing in on the human gene set. Our protocol, however, has two shortcomings: (i) the bioinformatic screening of the predicted genes, applied to filter out false positives, cannot handle intronless genes; and (ii) the experimental verification could fail to identify expression at a specific developmental time. This highlights the importance of developing methods that could provide a reliable estimate of the number of these two types of gene
- …