53 research outputs found
Mixed-precision deep learning based on computational memory
Deep neural networks (DNNs) have revolutionized the field of artificial
intelligence and have achieved unprecedented success in cognitive tasks such as
image and speech recognition. Training of large DNNs, however, is
computationally intensive and this has motivated the search for novel computing
architectures targeting this application. A computational memory unit with
nanoscale resistive memory devices organized in crossbar arrays could store the
synaptic weights in their conductance states and perform the expensive weighted
summations in place in a non-von Neumann manner. However, updating the
conductance states in a reliable manner during the weight update process is a
fundamental challenge that limits the training accuracy of such an
implementation. Here, we propose a mixed-precision architecture that combines a
computational memory unit performing the weighted summations and imprecise
conductance updates with a digital processing unit that accumulates the weight
updates in high precision. A combined hardware/software training experiment of
a multilayer perceptron based on the proposed architecture using a phase-change
memory (PCM) array achieves 97.73% test accuracy on the task of classifying
handwritten digits (based on the MNIST dataset), within 0.6% of the software
baseline. The architecture is further evaluated using accurate behavioral
models of PCM on a wide class of networks, namely convolutional neural
networks, long-short-term-memory networks, and generative-adversarial networks.
Accuracies comparable to those of floating-point implementations are achieved
without being constrained by the non-idealities associated with the PCM
devices. A system-level study demonstrates 173x improvement in energy
efficiency of the architecture when used for training a multilayer perceptron
compared with a dedicated fully digital 32-bit implementation
Efficient voice communications over IEEE 802.11 WLANs using improved PCF procedures
Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or mass reproduced without the explicit permission of the copyright holder
Run-time Optimized Reconfiguration Using Instruction Forecasting
The extensive use of reconfigurable computing devices has imposed a new category of processors, the dynamic instruction set processors (DISPs) that customize their instruction sets dynamically to the application needs. One of the major drawbacks of DISPs is the reconfiguration time needed to alter the instruction set, which is directly added to the program execution time discouraging the use of DISPs especially for time critical processing applications. This paper introduces a methodology for optimizing reconfiguration time through instruction forecasting and presents the results obtained when applying this method to Medium Access processing systems that execute time critical network tasks
- …