4 research outputs found

    Aerosol/Ink Jet Printing Technology for High-Temperature MEMS Sensors

    No full text
    In this work we present the results on the application of additive technology that is aerosol and ink jet technique for the fabrication of high-temperature metal oxide gas sensors. The application of thin (12 μm) alumina membrane, aerosol jet printing of Pt microheater (line width 40–60 μm), printed sensing layer made of nanocristalline tin dioxide based material, laser cutting of the membrane enabled the fabrication of full-printed cantilever-shaped high-temperature sensor with optimal power consumption (~80 mW at 450 °C) applicable in wireless instruments for the detection of combustible and toxic gases including methane

    Controlled focusing of silver nanoparticles beam to form the microstructures on substrates

    No full text
    The aerodynamic focusing in the coaxial nozzle and deposition on substrates of silver nanoparticles beams at the high subsonic speeds has been studied. The multi-spark discharge generator was used as a source of silver nanoparticles. We established that controlling the high-speed sheath flow allows to provide the minimization of the aerosol beam diameter for 4 times and printing of silver lines with width up to 60 μm using a nozzle 100 μm in outlet diameter. It was realized due to usage of high-speed beams of silver nanoparticle agglomerates, with the size of 25–110 nm, consisting of the primary particles with diameter of 5–10 nm. The agglomeration effect of aerosol nanoparticles plays a positive role providing particle deposition onto a substrate and substantially reducing diffusion broadening of an aerosol beam

    MEMS Sensors Based on Very Thin LTCC

    No full text
    The application of thin LTCC is a very interesting and promising approach to the fabrication of ceramic MEMS gas sensors. The attempts to use this material were restricted till now by the thickness of commercial material (>50 μm). In this work, we found a possibility to fabricate thin LTCC membranes (20–30 μm) stretched on a frame made of 100 μm thick LTCC. Aerosol jet printed Pt microheater and laser cutting of the membrane gave a cantilever shaped microhotplate with hot spot of about 300 × 300 μm. Power consumption of the heater is ~150 mW at 450 °C
    corecore