6 research outputs found

    The large fraction of heterochromatin in Drosophila neurons is bound by both B-type lamin and HP1a

    Get PDF
    CONCLUSIONS: In various differentiated Drosophila cell types, we discovered the existence of peripheral heterochromatin, similar to that observed in mammals. Our findings support the model that peripheral heterochromatin matures enhancing the repression of unwanted genes as cells terminally differentiate.BACKGROUND: In most mammalian cell lines, chromatin located at the nuclear periphery is represented by condensed heterochromatin, as evidenced by microscopy observations and DamID mapping of lamina-associated domains (LADs) enriched in dimethylated Lys9 of histone H3 (H3K9me2). However, in Kc167 cell culture, the only Drosophilla cell type where LADs have previously been mapped, they are neither H3K9me2-enriched nor overlapped with the domains of heterochromatin protein 1a (HP1a).RESULTS: Here, using cell type-specific DamID we mapped genome-wide LADs, HP1a and Polycomb (Pc) domains from the central brain, Repo-positive glia, Elav-positive neurons and the fat body of Drosophila third instar larvae. Strikingly, contrary to Kc167 cells of embryonic origin, in neurons and, to a lesser extent, in glia and the fat body, HP1a domains appear to overlap strongly with LADs in both the chromosome arms and pericentromeric regions. Accordingly, centromeres reside closer to the nuclear lamina in neurons than in Kc167 cells. As expected, active gene promoters are mostly not present in LADs, HP1a and Pc domains. These domains are occupied by silent or weakly expressed genes with genes residing in the HP1a-bound LADs expressed at the lowest level

    A toolset to study functions of Cytosolic non-specific dipeptidase 2 (CNDP2) using Drosophila as a model organism

    Full text link
    Abstract Background Expression of the CNDP2 gene is frequently up- or down-regulated in different types of human cancers. However, how the product of this gene is involved in cell growth and proliferation is poorly understood. Moreover, our knowledge of the functions of the CNDP2 orthologs in well-established model organisms is scarce. In particular, the function of the D. melanogaster ortholog of CNDP2, encoded by the CG17337 gene (hereafter referred to as dCNDP2), is still unknown. Results This study was aimed at developing a set of genetic and molecular tools to study the roles of dCNDP2. We generated a dCNDP2 null mutation (hereafter ∆dCNDP2) using CRISPR/Cas9-mediated homologous recombination (HR) and found that the ∆dCNDP2 mutants are homozygous viable, morphologically normal and fertile. We also generated transgenic fly lines expressing eGFP-tagged and non-tagged dCNDP2 protein, all under the control of the UAS promoter, as well as polyclonal antibodies specific to dCNDP2. Using these tools, we demonstrate that only one of the two predicted dCNDP2 isoforms is expressed throughout the different tissues tested. dCNDP2 was detected in both the cytoplasm and the nucleus, and was found to be associated with multiple sites in the salivary gland polytene chromosomes. Conclusions The dCNDP2 gene is not essential for fly viability under standard laboratory conditions. The subcellular localization pattern of dCNDP2 suggests that this protein might have roles in both the cytoplasm and the nucleus. The genetic and molecular tools developed in this study will allow further functional characterization of the conserved CNDP2 protein using D. melanogaster as a model system
    corecore