205 research outputs found

    MapMi: automated mapping of microRNA loci.

    Get PDF
    BACKGROUND: A large effort to discover microRNAs (miRNAs) has been under way. Currently miRBase is their primary repository, providing annotations of primary sequences, precursors and probable genomic loci. In many cases miRNAs are identical or very similar between related (or in some cases more distant) species. However, miRBase focuses on those species for which miRNAs have been directly confirmed. Secondly, specific miRNAs or their loci are sometimes not annotated even in well-covered species. We sought to address this problem by developing a computational system for automated mapping of miRNAs within and across species. Given the sequence of a known miRNA in one species it is relatively straightforward to determine likely loci of that miRNA in other species. Our primary goal is not the discovery of novel miRNAs but the mapping of validated miRNAs in one species to their most likely orthologues in other species. RESULTS: We present MapMi, a computational system for automated miRNA mapping across and within species. This method has a sensitivity of 92.20% and a specificity of 97.73%. Using the latest release (v14) of miRBase, we obtained 10,944 unannotated potential miRNAs when MapMi was applied to all 21 species in Ensembl Metazoa release 2 and 46 species from Ensembl release 55. CONCLUSIONS: The pipeline and an associated web-server for mapping miRNAs are freely available on http://www.ebi.ac.uk/enright-srv/MapMi/. In addition precomputed miRNA mappings of miRBase miRNAs across a large number of species are provided

    Detecting and comparing non-coding RNAs in the high-throughput era.

    Get PDF
    In recent years there has been a growing interest in the field of non-coding RNA. This surge is a direct consequence of the discovery of a huge number of new non-coding genes and of the finding that many of these transcripts are involved in key cellular functions. In this context, accurately detecting and comparing RNA sequences has become important. Aligning nucleotide sequences is a key requisite when searching for homologous genes. Accurate alignments reveal evolutionary relationships, conserved regions and more generally any biologically relevant pattern. Comparing RNA molecules is, however, a challenging task. The nucleotide alphabet is simpler and therefore less informative than that of amino-acids. Moreover for many non-coding RNAs, evolution is likely to be mostly constrained at the structural level and not at the sequence level. This results in very poor sequence conservation impeding comparison of these molecules. These difficulties define a context where new methods are urgently needed in order to exploit experimental results to their full potential. This review focuses on the comparative genomics of non-coding RNAs in the context of new sequencing technologies and especially dealing with two extremely important and timely research aspects: the development of new methods to align RNAs and the analysis of high-throughput data

    Large-scale analysis of microRNA evolution.

    Get PDF
    BACKGROUND: In animals, microRNAs (miRNA) are important genetic regulators. Animal miRNAs appear to have expanded in conjunction with an escalation in complexity during early bilaterian evolution. Their small size and high-degree of similarity makes them challenging for phylogenetic approaches. Furthermore, genomic locations encoding miRNAs are not clearly defined in many species. A number of studies have looked at the evolution of individual miRNA families. However, we currently lack resources for large-scale analysis of miRNA evolution. RESULTS: We addressed some of these issues in order to analyse the evolution of miRNAs. We perform syntenic and phylogenetic analysis for miRNAs from 80 animal species. We present synteny maps, phylogenies and functional data for miRNAs across these species. These data represent the basis of our analyses and also act as a resource for the community. CONCLUSIONS: We use these data to explore the distribution of miRNAs across phylogenetic space, characterise their birth and death, and examine functional relationships between miRNAs and other genes. These data confirm a number of previously reported findings on a larger scale and also offer novel insights into the evolution of the miRNA repertoire in animals, and it's genomic organization

    Reciprocal regulation of microRNA and mRNA profiles in neuronal development and synapse formation.

    Get PDF
    BACKGROUND: Synapse formation and the development of neural networks are known to be controlled by a coordinated program of mRNA synthesis. microRNAs are now recognized to be important regulators of mRNA translation and stability in a wide variety of organisms. While specific microRNAs are known to be involved in neural development, the extent to which global microRNA and mRNA profiles are coordinately regulated in neural development is unknown. RESULTS: We examined mouse primary neuronal cultures, analyzing microRNA and mRNA expression. Three main developmental patterns of microRNA expression were observed: steady-state levels, up-regulated and down-regulated. Co-expressed microRNAs were found to have related target recognition sites and to be encoded in distinct genomic locations. A number of 43 differentially expressed miRNAs were located in five genomic clusters. Their predicted mRNA targets show reciprocal levels of expression. We identified a set of reciprocally expressed microRNAs that target mRNAs encoding postsynaptic density proteins and high-level steady-state microRNAs that target non-neuronal low-level expressed mRNAs. CONCLUSION: We characterized hundreds of miRNAs in neuronal culture development and identified three major modes of miRNA expression. We predict these miRNAs to regulate reciprocally expressed protein coding genes, including many genes involved in synaptogenesis. The identification of miRNAs that target mRNAs during synaptogenesis indicates a new level of regulation of the synapse

    Annotation of mammalian primary microRNAs.

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are important regulators of gene expression and have been implicated in development, differentiation and pathogenesis. Hundreds of miRNAs have been discovered in mammalian genomes. Approximately 50% of mammalian miRNAs are expressed from introns of protein-coding genes; the primary transcript (pri-miRNA) is therefore assumed to be the host transcript. However, very little is known about the structure of pri-miRNAs expressed from intergenic regions. Here we annotate transcript boundaries of miRNAs in human, mouse and rat genomes using various transcription features. The 5' end of the pri-miRNA is predicted from transcription start sites, CpG islands and 5' CAGE tags mapped in the upstream flanking region surrounding the precursor miRNA (pre-miRNA). The 3' end of the pri-miRNA is predicted based on the mapping of polyA signals, and supported by cDNA/EST and ditags data. The predicted pri-miRNAs are also analyzed for promoter and insulator-associated regulatory regions. RESULTS: We define sets of conserved and non-conserved human, mouse and rat pre-miRNAs using bidirectional BLAST and synteny analysis. Transcription features in their flanking regions are used to demarcate the 5' and 3' boundaries of the pri-miRNAs. The lengths and boundaries of primary transcripts are highly conserved between orthologous miRNAs. A significant fraction of pri-miRNAs have lengths between 1 and 10 kb, with very few introns. We annotate a total of 59 pri-miRNA structures, which include 82 pre-miRNAs. 36 pri-miRNAs are conserved in all 3 species. In total, 18 of the confidently annotated transcripts express more than one pre-miRNA. The upstream regions of 54% of the predicted pri-miRNAs are found to be associated with promoter and insulator regulatory sequences. CONCLUSION: Little is known about the primary transcripts of intergenic miRNAs. Using comparative data, we are able to identify the boundaries of a significant proportion of human, mouse and rat pri-miRNAs. We confidently predict the transcripts including a total of 77, 58 and 47 human, mouse and rat pre-miRNAs respectively. Our computational annotations provide a basis for subsequent experimental validation of predicted pri-miRNAs

    High-density P300 enhancers control cell state transitions.

    Get PDF
    BACKGROUND: Transcriptional enhancers are frequently bound by a set of transcription factors that collaborate to activate lineage-specific gene expression. Recently, it was appreciated that a subset of enhancers comprise extended clusters dubbed stretch- or super-enhancers (SEs). These SEs are located near key cell identity genes, and enriched for non-coding genetic variations associated with disease. Previously, SEs have been defined as having the highest density of Med1, Brd4 or H3K27ac by ChIP-seq. The histone acetyltransferase P300 has been used as a marker of enhancers, but little is known about its binding to SEs. RESULTS: We establish that P300 marks a similar SE repertoire in embryonic stem cells as previously reported using Med1 and H3K27ac. We also exemplify a role for SEs in mouse T helper cell fate decision. Similarly, upon activation of macrophages by bacterial endotoxin, we found that many SE-associated genes encode inflammatory proteins that are strongly up-regulated. These SEs arise from small, low-density enhancers in unstimulated macrophages. We also identified expression quantitative trait loci (eQTL) in human monocytes that lie within such SEs. In macrophages and Th17 cells, inflammatory SEs can be perturbed either genetically or pharmacologically thus revealing new avenues to target inflammation. CONCLUSIONS: Our findings support the notion that P300-marked SEs can help identify key nodes of transcriptional control during cell fate decisions. The SE landscape changes drastically during cell differentiation and cell activation. As these processes are crucial in immune responses, SEs may be useful in revealing novel targets for treating inflammatory diseases

    Systematic analysis of off-target effects in an RNAi screen reveals microRNAs affecting sensitivity to TRAIL-induced apoptosis.

    Get PDF
    BACKGROUND: RNA inhibition by siRNAs is a frequently used approach to identify genes required for specific biological processes. However RNAi screening using siRNAs is hampered by non-specific or off target effects of the siRNAs, making it difficult to separate genuine hits from false positives. It is thought that many of the off-target effects seen in RNAi experiments are due to siRNAs acting as microRNAs (miRNAs), causing a reduction in gene expression of unintended targets via matches to the 6 or 7 nt 'seed' sequence. We have conducted a careful examination of off-target effects during an siRNA screen for novel regulators of the TRAIL apoptosis induction pathway(s). RESULTS: We identified 3 hexamers and 3 heptamer seed sequences that appeared multiple times in the top twenty siRNAs in the TRAIL apoptosis screen. Using a novel statistical enrichment approach, we systematically identified a further 17 hexamer and 13 heptamer seed sequences enriched in high scoring siRNAs. The presence of one of these seeds sequences (which could explain 6 of 8 confirmed off-target effects) is sufficient to elicit a phenotype. Three of these seed sequences appear in the human miRNAs miR-26a, miR-145 and miR-384. Transfection of mimics of these miRNAs protects several cell types from TRAIL-induced cell death. CONCLUSIONS: We have demonstrated a role for miR-26a, miR-145 and miR-26a in TRAIL-induced apoptosis. Further these results show that RNAi screening enriches for siRNAs with relevant off-target effects. Some of these effects can be identified by the over-representation of certain seed sequences in high-scoring siRNAs and we demonstrate the usefulness of such systematic analysis of enriched seed sequences

    Visualisation of BioPAX Networks using BioLayout Express (3D).

    Get PDF
    BioLayout Express (3D) is a network analysis tool designed for the visualisation and analysis of graphs derived from biological data. It has proved to be powerful in the analysis of gene expression data, biological pathways and in a range of other applications. In version 3.2 of the tool we have introduced the ability to import, merge and display pathways and protein interaction networks available in the BioPAX Level 3 standard exchange format. A graphical interface allows users to search for pathways or interaction data stored in the Pathway Commons database. Queries using either gene/protein or pathway names are made via the cPath2 client and users can also define the source and/or species of information that they wish to examine. Data matching a query are listed and individual records may be viewed in isolation or merged using an 'Advanced' query tab. A visualisation scheme has been defined by mapping BioPAX entity types to a range of glyphs. Graphs of these data can be viewed and explored within BioLayout as 2D or 3D graph layouts, where they can be edited and/or exported for visualisation and editing within other tools
    corecore