34 research outputs found

    Response to exogenous surfactant is different during open lung and conventional ventilation

    No full text
    Objective: Previous studies have shown that the efficacy of exogenous surfactant is dose-dependent during conventional positive pressure ventilation (PPVCON). The present study aimed to determine whether this dose-dependent relationship is also present during open lung (OLC) ventilation. We also explored the effect of exogenous surfactant on the ventilation pressures applied during ventilation. Design: Animal study. Setting: University-affiliated research laboratory. Subjects: Seventy-two newborn piglets. Interventions: After repeated whole lung lavage, animals were randomly allocated to two surfactant groups receiving either 100 mg/kg surfactant (S100) or 25 mg/kg surfactant (S25) or to a control group receiving a bolus of air. Within each group, animals were randomly assigned to either PPVCON, open lung PPV (PPVOLC), or open lung high-frequency oscillatory ventilation (HFOVOLC) and ventilated for 5 hrs. Measurements and Main Results: The ventilation pressures decreased in a dose-dependent way, showing the largest reduction in the S100 group. In both OLC groups, oxygenation, lung mechanics, and polymorphonuclear neutrophils analyzed in bronchoalveolar lavage were Independent of the surfactant dose. In the PPV CON group, however, there was a clear dose-dependency, resulting in a deterioration of oxygenation and lung mechanics and an increase in polymorphonuclear neutrophils as the surfactant dose decreased. Although comparable between the three ventilation groups, bronchoalveolar lavage interleukin-8 concentrations significantly increased in all ventilation groups as the surfactant dose increased. Alveolar protein influx and conversion of large to small aggregate surfactant were higher during PPVCON compared with both OLC groups. There were no differences in the surfactant treatment response between PPVOLC and HFOVOLC. Conclusion: Exogenous surfactant enables a reduction in ventilation pressures. Compared with PPVCON, the efficacy of surfactant treatment is less dose-dependent during open lung ventilation. Surfactant conversion during open lung ventilation is reduced compared with PPVCON. Exogenous surfactant seems to up-regulate bronchoalveolar lavage interleukin-8 concentrations, independent of the ventilation strategy

    Response to exogenous surfactant is different during open lung and conventional ventilation

    No full text
    Objective: Previous studies have shown that the efficacy of exogenous surfactant is dose-dependent during conventional positive pressure ventilation (PPVCON). The present study aimed to determine whether this dose-dependent relationship is also present during open lung (OLC) ventilation. We also explored the effect of exogenous surfactant on the ventilation pressures applied during ventilation. Design: Animal study. Setting. University-affiliated research laboratory. Subjects. Seventy-two newborn piglets. Interventions: After repeated whole lung lavage, animals were randomly allocated to two surfactant groups receiving either 100 mg/kg surfactant (S100) or 25 mg/kg surfactant (S25) or to a control group receiving a bolus of air. Within each group, animals were randomly assigned to either PPVCON, open lung PPV (PPVOLC), or open lung high-frequency oscillatory ventilation (HFOVOLC) and ventilated for 5 hrs. Measurements and Main Results: The ventilation pressures decreased in a dose-dependent way, showing the largest reduction in the S100 group. In both OLC groups, oxygenation, lung mechanics, and polymorphonuclear neutrophils analyzed in bronchoalveolar lavage were independent of the surfactant dose. In the PPVCON group, however, there was a clear dose-dependency, resulting in a deterioration of oxygenation and lung mechanics and an increase in polymorphonuclear neutrophils as the surfactant dose decreased. Although comparable between the three ventilation groups, bronchoalveolar lavage interleukin-8 concentrations significantly increased in all ventilation groups as the surfactant dose increased. Alveolar protein influx and conversion of large to small aggregate surfactant were higher during PPVCON compared with both OLC groups. There were no differences in the surfactant treatment response between PPVOLC- and HFOVOLC- Conclusion: Exogenous surfactant enables a reduction in ventilation pressures. Compared with PPVCON, the efficacy of surfactant treatment is less dose-dependent during open lung ventilation. Surfactant conversion during open lung ventilation is reduced compared with PPVCON. Exogenous surfactant seems to up-regulate bronchoalveolar lavage interleukin-8 concentrations, independent of the ventilation strateg

    Application of the open-lung concept during positive-pressure ventilation reduces pulmonary inflammation in newborn piglets

    No full text
    It has been shown that application of the open-lung concept (OLC) during high-frequency oscillatory ventilation (HFOV) attenuates pulmonary inflammation. We hypothesized that this attenuation could also be achieved by applying the OLC during positive-pressure ventilation (PPV). After repeated whole-lung lavage, newborn piglets were assigned to one of three ventilation groups: (1) PPVOLC; (2) HFOVOLC, or (3) conventional PPV (PPVCON). After a ventilation period of 5 h, analysis of bronchoalveolar lavage fluid showed a reduced influx of polymorphonuclear neutrophils, interleukin 8, and thrombin activity in both OLC groups as compared with the PPVCON group. There were no differences in tumor necrosis factor alpha levels. We conclude that application of the OLC during PPV reduces pulmonary inflammation as compared with conventional PPV and that the magnitude of this reduction is comparable to that of HFOV. Copyright (C) 2003 S. Karger AG, Base

    Early increased levels of matrix metalloproteinase-9 in neonates recovering from respiratory distress syndrome

    No full text
    Aim: Matrix metalloproteinases (MMPs) play an eminent role in airway injury and remodelling. We explored the hypothesis that pulmonary MMP levels would differ early after birth (2-4 days) between infants with resolving respiratory distress syndrome (RDS) and infants developing chronic lung disease of prematurity (CLD). Methods: Thirty-two prematurely born infants (gestational age <= 30 weeks) diagnosed with RDS were included. In 13 infants RDS resolved while 19 developed CLD. MMP-2 and MMP-9 in bronchoalveolar lavage (BAL) fluids collected on postnatal days 2, 4, 7 and 10 were analyzed by zymography and densitometry. Immunochemistry was performed on BAL cells and lung tissue to identify cellular sources of MMP-9 in RDS and CLD. Results: Median MMP-9 levels increased significantly on day 2 in BAL fluid from patients with resolving RDS (median values MMP-9 = 42.0 arbitrary units (AU)) compared to CLD patients (MMP-9 = 5.4 AU). MMP-9 and neutrophil lipocalin-associated MMP-9 (NGAL) were significantly higher on day 4 in BAL fluid from resolving RDS (MMP-9 = 65.8 AU; NGAL = 16.1 AU) compared to CLD (MMP-9 = 25.4 AU; NGAL = 2.0 AU), Levels of MMP-9 and NGAL increased subsequently on days 7 and 10 in CLD. No differences in MMP-2 levels were detected between RDS and CLD. Neutrophils, macrophages and alveolar type-II epithelial cells were identified as potential sources of MMP-9. Conclusion: Our findings indicate differences in early MMP-9 BAL fluid levels between resolving RDS and developing CLD, which may relate to the ability to raise an early and adequate response to the initial injury. Copyright (C) 2006 S. Karger AG, Base
    corecore