1 research outputs found

    Multiplicity of metastable nonergodic states of a dispersed nonwetting liquid in a disordered nanoporous medium

    No full text
    Three different metastable nonergodic states of a dispersed nonwetting liquid (water) in the Fluka 100 C8 and Fluka 100 C18 disordered porous media, as well as transitions between these states under variation of the temperature and the degree of filling, have been qualitatively described. It has been shown that the appearance of such states is due to spatial variations of the number of the nearest neighbors because of the broadening of the pore size distribution function f(R), fluctuations of various local configurations of neighbors in the system of pores, and fluctuations of a configuration of a pore and its environment consisting of filled and empty pores on a percolation cluster. These states and transitions are caused by the competition between the effective repulsion of the nonwetting liquid from the wall of the pore, which is responsible for the “extrusion” of the liquid from the pore, and the effective collective multiparticle attraction of the liquid cluster in the pore to clusters in the neighboring connected pores. The theoretical dependences obtained make it possible to qualitatively describe experimental data
    corecore