3,220 research outputs found

    Long-term effects of caloric restriction or exercise on DNA and RNA oxidation levels in white blood cells and urine in humans

    Get PDF
    Excessive adiposity is associated with increased oxidative stress and accelerated aging. Weight loss induced by negative energy balance reduces markers of oxidation in experimental animals and humans. The long-term effects of weight loss induced by calorie restriction or increased energy expenditure induced by exercise on measures of oxidative stress and damage have not been studied in humans. The objective of the present study was to compare the effects of 20% caloric restriction or 20% exercise alone over 1 year on oxidative damage to DNA and RNA, as assessed through white blood cell and urine analyses. Eighteen men and women aged 50 to 60 years with a body mass index (BMI) between 23.5 to 29.9 kg/m(2) were assigned to one of two conditions — 20% CR (n = 9) or 20% EX (n = 9) — which was designed to produce an identical energy deficit through increased energy expenditure. Compared to baseline, both interventions significantly reduced oxidative damage to both DNA (48.5% and 49.6% reduction for the CR and EX groups, respectively) and RNA (35.7% and 52.1% reduction for the CR and EX groups, respectively) measured in white blood cells. However, urinary levels of DNA and RNA oxidation products did not differ from baseline values following either 12-month intervention program. Data from the present study provide evidence that negative energy balances induced through either CR or EX result in substantial and similar improvements in markers of DNA and RNA damage to white blood cells, potentially by reducing systemic oxidative stress

    Magnetoentropic mapping and computational modeling of cycloids and skyrmions in the lacunar spinels GaV4_4S8_8 and GaV4_4Se8_8

    Full text link
    We report the feasibility of using magnetoentropic mapping for the rapid identification of magnetic cycloid and skyrmion phases in uniaxial systems, based on the GaV4S8 and GaV4Se8 model skyrmion hosts with easy-axis and easy-plane anisotropies respectively. We show that these measurements can be interpreted with the help of a simple numerical model for the spin Hamiltonian to yield unambiguous assignments for both single phase regions and phase boundaries. In the two lacunar spinel chemistries, we obtain excellent agreement between the measured magnetoentropic features and a minimal spin Hamiltonian built on Heisenberg exchange, single-ion anisotropy, and anisotropic Dzyaloshinskii-Moriya interactions. In particular, we identify characteristic high-entropy behavior in the cycloid phase that serves as a precursor to the formation of skyrmions at elevated temperatures and is a readily-measurable signature of this phase transition. Our results demonstrate that rapid magnetoentropic mapping guided by numerical modeling is an effective means of understanding the complex magnetic phase diagrams innate to skyrmion hosts. One notable exception is the observation of an anomalous, low-temperature high-entropy state in the easy-plane system GaV4_4Se8_8, which is not captured in the numerical model. Possible origins of this state are discussed.Comment: 10 pages and 7 figure

    Continuous transport of Pacific-derived anthropogenic radionuclides towards the Indian Ocean

    Get PDF
    Unusually high concentrations of americium and plutonium have been observed in a sediment core collected from the eastern Lombok Basin between Sumba and Sumbawa Islands in the Indonesian Archipelago. Gamma spectrometry and accelerator mass spectrometry data together with radiometric dating of the core provide a high-resolution record of ongoing deposition of anthropogenic radionuclides. A plutonium signature characteristic of the Pacific Proving Grounds (PPG) dominates in the first two decades after the start of the high yield atmospheric tests in 1950’s. Approximately 40–70% of plutonium at this site in the post 1970 period originates from the PPG. This sediment record of transuranic isotopes deposition over the last 55 years provides evidence for the continuous long-distance transport of particle-reactive radionuclides from the Pacific Ocean towards the Indian Ocean

    Beneficial Effects of a Q-ter® Based Nutritional Mixture on Functional Performance, Mitochondrial Function, and Oxidative Stress in Rats

    Get PDF
    BackgroundMitochondrial dysfunction and oxidative stress are central mechanisms underlying the aging process and the pathogenesis of many age-related diseases. Selected antioxidants and specific combinations of nutritional compounds could target many biochemical pathways that affect both oxidative stress and mitochondrial function and, thereby, preserve or enhance physical performance.Methodology/principal findingsIn this study, we evaluated the potential anti-aging benefits of a Q-ter based nutritional mixture (commercially known as Eufortyn) mainly containing the following compounds: terclatrated coenzyme Q(10) (Q-ter), creatine and a standardized ginseng extract. We found that Eufortyn supplementation significantly ameliorated the age-associated decreases in grip strength and gastrocnemius subsarcolemmal mitochondria Ca(2+) retention capacity when initiated in male Fischer344 x Brown Norway rats at 21 months, but not 29 months, of age. Moreover, the increases in muscle RNA oxidation and subsarcolemmal mitochondrial protein carbonyl levels, as well as the decline of total urine antioxidant power, which develop late in life, were mitigated by Eufortyn supplementation in rats at 29 months of age.Conclusions/significanceThese data imply that Eufortyn is efficacious in reducing oxidative damage, improving the age-related mitochondrial functional decline, and preserving physical performance when initiated in animals at early midlife (21 months). The efficacy varied, however, according to the age at which the supplementation was provided, as initiation in late middle age (29 months) was incapable of restoring grip strength and mitochondrial function. Therefore, the Eufortyn supplementation may be particularly beneficial when initiated prior to major biological and functional declines that appear to occur with advancing age

    Experimental Investigation into the Influence of Backfill Types on the Vibro-acoustic Characteristics of Leaks in MDPE Pipe

    Get PDF
    Pipe leak location estimates are commonly conducted using Vibro-Acoustic Emission (VAE) based methods, usually using accelerometers or hydrophones. Successful estimation of a leak's location is dependent on a number of factors, including the speed of sound, resonance, backfill, reflections from other sources, leak shape and size. However, despite some investigation into some of the aforementioned factors, the influence of backfill type on a leak's VAE signal has still not been experimentally quantified. A limited number of studies have attempted to quantify the effects of backfill. However, all of these studies couple other variables which could be equally responsible for their observed changes in leak signal. There have been no controlled studies where one variable can be directly compared to one another (i.e. all variables remain constant, only changing backfill type). The aim of this paper is to better characterise the influence of backfill on a leak's VAE signal by individually isolating all variables. For the first time, this paper demonstrates the influence of backfill on leak VAE signal by keeping all other variables consistent. It was found that the backfill type had a strong influence on the frequency and amplitude of leak signals, which is likely to have a significant impact on the accuracy of leak location estimates
    • …
    corecore