25 research outputs found

    Platinum–rhodium–tin/carbon electrocatalysts for ethanol oxidation in acid media: effect of the precursor addition order and the amount of tin

    Get PDF
    Carbon-supported Pt x –Rh y –Sn z catalysts (x:y:z = 3:1:4, 6:2:4, 9:3:4) are prepared by Pt, Rh, and Sn precursors reduction in different addition order. The materials are characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy techniques and are evaluated for the electrooxidation of ethanol in acidic media by cyclic voltammetry, chronoamperometry, and anode potentiostatic polarization. The influence of both the order in which the precursors are added and the composition of metals in the catalysts on the electrocatalytic activity and physico-chemical characteristics of Pt x –Rh y –Sn z /C catalysts is evaluated. Oxidized Rh species prevail on the surface of catalysts synthesized by simultaneous co-precipitation, thus demonstrating the influence of synthesis method on the oxidation state of catalysts. Furthermore, high amounts of Sn in composites synthesized by co-precipitation result in very active catalysts at low potentials (bifunctional effect), while medium Sn load is needed for sequentially deposited catalysts when the electronic effect is most important (high potentials), since more exposed Pt and Rh sites are needed on the catalyst surface to alcohol oxidation. The Pt3–Rh1–Sn4/C catalyst prepared by co-precipitation is the most active at potentials lower than 0.55 V (related to bifunctional effect), while the Pt6–Rh2–Sn4/C catalyst, prepared by sequential precipitation (first Rh and, after drying, Pt + Sn), is the most active above 0.55 V.The authors thank the Brazilian National Council of Technological and Scientific Development-CNPq (Grants: 402243/2012-9, 303630/2012-4, 474261/2013-1, 407274/2013-8, and 310282/2013-6) for the scholarships and financial support for this work

    PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review

    No full text
    The last decade's research on the performance of proton-exchange membrane direct ethanol fuel cells (PEM-DEFCs) and anion exchange membrane direct ethanol fuel cells (AEM-DEFCs) is included in the present review. Future research challenges are identified along with potential strategies to overcome them. Pt-containing or Pt-free PEM-DEFCs that use acid proton-exchange membranes (typically Nafion type) exhibit relatively low performance (i.e., the state-of-the-art peak power density is 110 mW cm(-2) at 145 A degrees C over 4 mg of total Pt loading), while Pt-containing or Pt-free AEM-DEFCs that use low-cost anion-exchange membrane have recently exhibited better performance values (i.e., the state-of-the-art peak power density is about 185 mW cm(-2) at 80 A degrees C over Au-modified Pd catalysts supported on carbon nanotubes. The required faster kinetics of the ethanol oxidation and especially for the oxygen reduction reaction seem to be satisfied from one side by the AEM-DEFCs and from the other by PEM-DEFCs only if working at intermediate temperature values (> 150 A degrees C). Moreover, new possibilities of using less expensive metal catalysts (as silver, nickel, and palladium) are opening mainly for AEM-DEFCs and the last years for PEM-DEFCs too. Finally, it is worth to be noticed that the best value ever reported (peak power density is 360 mW cm(-2) at 60 A degrees C) has been obtained in a very promising alkaline-acid direct ethanol fuel cell (AA-DEFC)
    corecore