173 research outputs found
Addition of a Preoperative Educational Video for Enhanced Recovery After Breast Cancer Surgery
Introduction: Patients undergoing breast cancer surgery at an urban teaching hospital lacked uniform and comprehensive preoperative education regarding Enhanced Recovery After Surgery (ERAS). A retrospective chart review was conducted comparing one year of data prior to ERAS incorporation to one year after implementation to assess the impact on breast cancer surgery patient outcomes. Methods: In collaboration with stakeholders, an animated video was created to educate patients regarding the ERAS pathway and set perioperative expectations. A valid, reliable survey measuring the patient’s surgical care experience was adapted and distributed along with the video to breast cancer patients undergoing surgery as a result of their diagnosis. Results: 100% (n=15) of survey participants responded either “yes, definitely” or “yes, somewhat” that the video explained what to expect during the recovery period. 93% of survey participants (n=14) responded that they felt more calm and relaxed after this video intervention, either definitely or somewhat, with one participant responding “no.” Fisher’s exact test demonstrated no statistically significant associations between age or level of education regarding the two primary outcomes. There was a statistically significant association found between having more office visits before surgery and the video “yes, definitely” versus “yes somewhat” explaining what to expect during the recovery period (p=0.043). Conclusions: This quality improvement project successfully provided effective patient education regarding ERAS for breast cancer surgery patients through a video modality that set perioperative expectations and helped the patient feel more calm and relaxed
Recommended from our members
Golden spiral photonic crystal fiber: polarization and dispersion properties
A golden spiral photonic crystal fiber (GS-PCF) design is presented in which air holes are arranged in a spiral pattern governed by the golden ratio, where the design has been inspired by the optimal arrangement of seeds found in nature. The birefringence and polarization properties of this fiber are analyzed using a vectorial finite-element method. The fiber that is investigated shows a large modal birefringence peak value of 0.016 at an operating wavelength of 1.55 μm and exhibits highly tuneable dispersion with multiple zero dispersion wavelengths and also large normal dispersion. The GS-PCF design has identical circular air holes that potentially simplify fabrication. In light of its properties, the GS-PCF could have application as a highly birefringent fiber and in nonlinear optics, and moreover the 2D chiral nature of the pattern could yield exotic properties
Large bubble rupture sparks fast liquid jet
This Letter presents the novel experimental observation of long and narrow
jets shooting out in disconnecting large elongated bubbles. We investigate this
phenomenon by carrying out experiments with various viscosities, surface
tensions, densities and nozzle radii. We propose a universal scaling law for
the jet velocity, which unexpectedly involves the bubble height to the power
3/2. This anomalous exponent suggests an energy focusing phenomenon. We
demonstrate experimentally that this focusing is purely gravity-driven and
independent of the pinch-off singularity
Inhibitory Ligand-Gated Ion Channels as Substrates for General Anesthetic Actions
Abstract General anesthetics have been in clinical use for more than 160 years. Nevertheless, their mechanism of action is still only poorly understood. In this review, we describe studies suggesting that inhibitory ligand-gated ion channels are potential targets for general anesthetics in vitro and describe how the involvement of Îł-aminobutyric acid (GABA) A receptor subtypes in anesthetic actions could be demonstrated by genetic studies in vivo
Broad Overview of Energy Efficiency and Renewable Energy Opportunities for Department of Defense Installations
The Strategic Environmental Research and Developmental Program (SERDP)/Environmental Security Technology Certification Program (ESTCP) is the Department of Defense?s (DOD) environmental science and technology program focusing on issues related to environment and energy for the military services. The SERDP/ESTCP Office requested that the National Renewable Energy Laboratory (NREL) provide technical assistance with strategic planning by evaluating the potential for several types of renewable energy technologies at DOD installations. NREL was tasked to provide technical expertise and strategic advice for the feasibility of geothermal resources, waste-to-energy technology, photovoltaics (PV), wind, microgrids, and building system technologies on military installations. This technical report is the deliverable for these tasks
Low Dose Isoflurane Exerts Opposing Effects on Neuronal Network Excitability in Neocortex and Hippocampus
The anesthetic excitement phase occurring during induction of anesthesia with volatile anesthetics is a well-known phenomenon in clinical practice. However, the physiological mechanisms underlying anesthetic-induced excitation are still unclear. Here we provide evidence from in vitro experiments performed on rat brain slices that the general anesthetic isoflurane at a concentration of about 0.1 mM can enhance neuronal network excitability in the hippocampus, while simultaneously reducing it in the neocortex. In contrast, isoflurane tissue concentrations above 0.3 mM expectedly caused a pronounced reduction in both brain regions. Neuronal network excitability was assessed by combining simultaneous multisite stimulation via a multielectrode array with recording intrinsic optical signals as a measure of neuronal population activity
At clinically relevant concentrations the anaesthetic/amnesic thiopental but not the anticonvulsant phenobarbital interferes with hippocampal sharp wave-ripple complexes
<p>Abstract</p> <p>Background</p> <p>Many sedative agents, including anesthetics, produce explicit memory impairment by largely unknown mechanisms. Sharp-wave ripple (SPW-R) complexes are network activity thought to represent the neuronal substrate for information transfer from the hippocampal to neocortical circuits, contributing to the explicit memory consolidation. In this study we examined and compared the actions of two barbiturates with distinct amnesic actions, the general anesthetic thiopental and the anticonvulsant phenobarbital, on in vitro SPW-R activity.</p> <p>Results</p> <p>Using an in vitro model of SPW-R activity we found that thiopental (50–200 μM) significantly and concentration-dependently reduced the incidence of SPW-R events (it increased the inter-event period by 70–430 %). At the concentration of 25 μM, which clinically produces mild sedation and explicit memory impairment, thiopental significantly reduced the quantity of ripple oscillation (it reduced the number of ripples and the duration of ripple episodes by 20 ± 5%, n = 12, <it>P </it>< 0.01), and suppressed the rhythmicity of SPWs by 43 ± 15% (n = 6, <it>P </it>< 0.05). The drug disrupted the synchrony of SPWs within the CA1 region at 50 μM (by 19 ± 12%; n = 5, <it>P </it>< 0.05). Similar effects of thiopental were observed at higher concentrations. Thiopental did not affect the frequency of ripple oscillation at any of the concentrations tested (10–200 μM). Furthermore, the drug significantly prolonged single SPWs at concentrations ≥50 μM (it increased the half-width and the duration of SPWs by 35–90 %). Thiopental did not affect evoked excitatory synaptic potentials and its results on SPW-R complexes were also observed under blockade of NMDA receptors. Phenobarbital significantly accelerated SPWs at 50 and 100 μM whereas it reduced their rate at 200 and 400 μM. Furthermore, it significantly prolonged SPWs, reduced their synchrony and reduced the quantity of ripples only at the clinically very high concentration of 400 μM, reported to affect memory.</p> <p>Conclusion</p> <p>We hypothesize that thiopental, by interfering with SPW-R activity, through enhancement of the GABA<sub>A </sub>receptor-mediated transmission, affects memory processes which involve hippocampal circuit activation. The quantity but not the frequency of ripple oscillation was affected by the drug.</p
- …