3 research outputs found

    Effects of Gate-Induced Electric Fields on Semiconductor Majorana Nanowires

    No full text
    We study the effect of gate-induced electric fields on the properties of semiconductor-superconductor hybrid nanowires which represent a promising platform for realizing topological superconductivity and Majorana zero modes. Using a self-consistent Schrödinger-Poisson approach that describes the semiconductor and the superconductor on equal footing, we are able to access the strong tunneling regime and identify the impact of an applied gate voltage on the coupling between semiconductor and superconductor. We discuss how physical parameters such as the induced superconducting gap and Landé g factor in the semiconductor are modified by redistributing the density of states across the interface upon application of an external gate voltage. Finally, we map out the topological phase diagram as a function of magnetic field and gate voltage for InAs/Al nanowires.QRD/Kouwenhoven LabQuTec

    Unified numerical approach to topological semiconductor-superconductor heterostructures

    No full text
    We develop a unified numerical approach for modeling semiconductor-superconductor heterostructures. All the key physical ingredients of these systems - orbital effect of magnetic field, superconducting proximity effect, and electrostatic environment - are taken into account on equal footing in a realistic device geometry. As a model system, we consider indium arsenide (InAs) nanowires with an epitaxial aluminum (Al) shell, which is one of the most promising platforms for Majorana zero modes. We demonstrate qualitative and quantitative agreement of the obtained results with the existing experimental data. Finally, we characterize the topological superconducting phase emerging in a finite magnetic field and calculate the corresponding topological phase diagram.QRD/Wimmer La

    Electric field tunable superconductor-semiconductor coupling in Majorana nanowires

    No full text
    We study the effect of external electric fields on superconductor-semiconductor coupling by measuring the electron transport in InSb semiconductor nanowires coupled to an epitaxially grown Al superconductor. We find that the gate voltage induced electric fields can greatly modify the coupling strength, which has consequences for the proximity induced superconducting gap, effective g-factor, and spin-orbit coupling, which all play a key role in understanding Majorana physics. We further show that level repulsion due to spin-orbit coupling in a finite size system can lead to seemingly stable zero bias conductance peaks, which mimic the behavior of Majorana zero modes. Our results improve the understanding of realistic Majorana nanowire systems.QRD/Kouwenhoven LabQuTechApplied SciencesQN/Bakkers La
    corecore