109 research outputs found

    Accelerated evolution of 3'avian FOXE1 genes, and thyroid and feather specific expression of chicken FoxE1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The forkhead transcription factor gene E1 (FOXE1) plays an important role in regulation of thyroid development, palate formation and hair morphogenesis in mammals. However, avian <it>FOXE1 </it>genes have not been characterized and as such, codon evolution of FOXE1 orthologs in a broader evolutionary context of mammals and birds is not known.</p> <p>Results</p> <p>In this study we identified the avian <it>FOXE1 </it>gene in chicken, turkey and zebra finch, all of which consist of a single exon. Chicken and zebra finch <it>FOXE1 </it>are uniquely located on the sex-determining Z chromosome. In situ hybridization shows that chicken <it>FOXE1 </it>is specifically expressed in the developing thyroid. Its expression is initiated at the placode stage and is maintained during the stages of vesicle formation and follicle primordia. Based on this expression pattern, we propose that avian <it>FOXE1 </it>may be involved in regulating the evagination and morphogenesis of thyroid. Chicken <it>FOXE1 </it>is also expressed in growing feathers. Sequence analysis identified two microdeletions in the avian <it>FOXE1 </it>genes, corresponding to the loss of a transferable repression domain and an engrailed homology motif 1 (Eh1) C-terminal to the forkhead domain. The avian <it>FOXE1 </it>proteins exhibit a significant sequence divergence of the C-terminus compared to those of amphibian and mammalian <it>FOXE1</it>. The codon evolution analysis (dN/dS) of <it>FOXE1 </it>shows a significantly increased dN/dS ratio in the avian lineages, consistent with either a relaxed purifying selection or positive selection on a few residues in avian FOXE1 evolution. Further site specific analysis indicates that while relaxed purifying selection is likely to be a predominant cause of accelerated evolution at the 3'-region of avian FOXE1, a few residues might have evolved under positive selection.</p> <p>Conclusions</p> <p>We have identified three avian <it>FOXE1 </it>genes based on synteny and sequence similarity as well as characterized the expression pattern of the chicken <it>FOXE1 </it>gene during development. Our evolutionary analyses suggest that while a relaxed purifying selection is likely to be the dominant force driving accelerated evolution of avian <it>FOXE1 </it>genes, a few residues may have evolved adaptively. This study provides a basis for future genetic and comparative biochemical studies of FOXE1.</p

    FGF signalling through RAS/MAPK and PI3K pathways regulates cell movement and gene expression in the chicken primitive streak without affecting E-cadherin expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>FGF signalling regulates numerous aspects of early embryo development. During gastrulation in amniotes, epiblast cells undergo an epithelial to mesenchymal transition (EMT) in the primitive streak to form the mesoderm and endoderm. In mice lacking FGFR1, epiblast cells in the primitive streak fail to downregulate E-cadherin and undergo EMT, and cell migration is inhibited. This study investigated how FGF signalling regulates cell movement and gene expression in the primitive streak of chicken embryos.</p> <p>Results</p> <p>We find that pharmacological inhibition of FGFR activity blocks migration of cells through the primitive streak of chicken embryos without apparent alterations in the level or intracellular localization of E-cadherin. E-cadherin protein is localized to the periphery of epiblast, primitive streak and some mesodermal cells. FGFR inhibition leads to downregulation of a large number of regulatory genes in the preingression epiblast adjacent to the primitive streak, the primitive streak and the newly formed mesoderm. This includes members of the FGF, NOTCH, EPH, PDGF, and canonical and non-canonical WNT pathways, negative modulators of these pathways, and a large number of transcriptional regulatory genes. <it>SNAI2 </it>expression in the primitive streak and mesoderm is not altered by FGFR inhibition, but is downregulated only in the preingression epiblast region with no significant effect on E-cadherin. Furthermore, over expression of SNAIL has no discernable effect on E-cadherin protein levels or localization in epiblast, primitive streak or mesodermal cells. FGFR activity modulates distinct downstream pathways including RAS/MAPK and PI3K/AKT. Pharmacological inhibition of MEK or AKT indicate that these downstream effectors control discrete and overlapping groups of genes during gastrulation. FGFR activity regulates components of several pathways known to be required for cell migration through the streak or in the mesoderm, including RHOA, the non-canonical WNT pathway, PDGF signalling and the cell adhesion protein N-cadherin.</p> <p>Conclusions</p> <p>In chicken embryos, FGF signalling regulates cell movement through the primitive streak by mechanisms that appear to be independent of changes in E-cadherin expression or protein localization. The positive and negative effects on large groups of genes by pharmacological inhibition of FGF signalling, including major signalling pathways and transcription factor families, indicates that the FGF pathway is a focal point of regulation during gastrulation in chicken.</p

    BioNetBuilder2.0: bringing systems biology to chicken and other model organisms

    Get PDF
    BACKGROUND:Systems Biology research tools, such as Cytoscape, have greatly extended the reach of genomic research. By providing platforms to integrate data with molecular interaction networks, researchers can more rapidly begin interpretation of large data sets collected for a system of interest. BioNetBuilder is an open-source client-server Cytoscape plugin that automatically integrates molecular interactions from all major public interaction databases and serves them directly to the user's Cytoscape environment. Until recently however, chicken and other eukaryotic model systems had little interaction data available.RESULTS:Version 2.0 of BioNetBuilder includes a redesigned synonyms resolution engine that enables transfer and integration of interactions across speciesthis engine translates between alternate gene names as well as between orthologs in multiple species. Additionally, BioNetBuilder is now implemented to be part of the Gaggle, thereby allowing seamless communication of interaction data to any software implementing the widely used Gaggle software. Using BioNetBuilder, we constructed a chicken interactome possessing 72,000 interactions among 8,140 genes directly in the Cytoscape environment. In this paper, we present a tutorial on how to do so and analysis of a specific use case.CONCLUSION:BioNetBuilder 2.0 provides numerous user-friendly systems biology tools that were otherwise inaccessible to researchers in chicken genomics, as well as other model systems. We provide a detailed tutorial spanning all required steps in the analysis. BioNetBuilder 2.0, the tools for maintaining its data bases, standard operating procedures for creating local copies of its back-end data bases, as well as all of the Gaggle and Cytoscape codes required, are open-source and freely available at http://err.bio.nyu.edu/cytoscape/bionetbuilder/ webcite.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    The chicken gene nomenclature committee report

    Get PDF
    Comparative genomics is an essential component of the post-genomic era. The chicken genome is the first avian genome to be sequenced and it will serve as a model for other avian species. Moreover, due to its unique evolutionary niche, the chicken genome can be used to understand evolution of functional elements and gene regulation in mammalian species. However comparative biology both within avian species and within amniotes is hampered due to the difficulty of recognising functional orthologs. This problem is compounded as different databases and sequence repositories proliferate and the names they assign to functional elements proliferate along with them. Currently, genes can be published under more than one name and one name sometimes refers to unrelated genes. Standardized gene nomenclature is necessary to facilitate communication between scientists and genomic resources. Moreover, it is important that this nomenclature be based on existing nomenclature efforts where possible to truly facilitate studies between different species. We report here the formation of the Chicken Gene Nomenclature Committee (CGNC), an international and centralized effort to provide standardized nomenclature for chicken genes. The CGNC works in conjunction with public resources such as NCBI and Ensembl and in consultation with existing nomenclature committees for human and mouse. The CGNC will develop standardized nomenclature in consultation with the research community and relies on the support of the research community to ensure that the nomenclature facilitates comparative and genomic studies

    The study design of UDRIVE: the Naturalistic Driving Study across Europe for cars, trucks and scooters

    Get PDF
    Purpose: UDRIVE is the first large-scale European Naturalistic Driving Study on cars, trucks and powered two wheelers. The acronym stands for "European naturalistic Driving and Riding for Infrastructure & Vehicle safety and Environment". The purpose of the study is to gain a better understanding of what happens on the road in everyday traffic situations. Methods: The paper describes Naturalistic Driving Studies, a method which provides insight into the actual real-world behaviour of road users, unaffected by experimental conditions and related biases. Naturalistic driving can be defined as a study undertaken to provide insight into driver behaviour during everyday trips by recording details of the driver, the vehicle and the surroundings through unobtrusive data gathering equipment and without experimental control. Data collection will take place in six EU Member States. Results: Road User Behaviour will be studied with a focus on both safety and environment. The UDRIVE project follows the steps of the FESTA-V methodology, which was originally designed for Field Operational Tests. Conclusions: Defining research questions forms the basis of the study design and the specification of the recording equipment. Both will be described in this paper. Although the project has just started collecting data from drivers, we consider the process of designing the study as a major result which may help other initiatives to set up similar studies

    [Avian cytogenetics goes functional] Third report on chicken genes and chromosomes 2015

    Get PDF
    High-density gridded libraries of large-insert clones using bacterial artificial chromosome (BAC) and other vectors are essential tools for genetic and genomic research in chicken and other avian species... Taken together, these studies demonstrate that applications of large-insert clones and BAC libraries derived from birds are, and will continue to be, effective tools to aid high-throughput and state-of-the-art genomic efforts and the important biological insight that arises from them

    Scientific, sustainability and regulatory challenges of cultured meat

    Get PDF
    Producing meat without the drawbacks of conventional animal agriculture would greatly contribute to future food and nutrition security. This Review Article covers biological, technological, regulatory and consumer acceptance challenges in this developing field of biotechnology. Cellular agriculture is an emerging branch of biotechnology that aims to address issues associated with the environmental impact, animal welfare and sustainability challenges of conventional animal farming for meat production. Cultured meat can be produced by applying current cell culture practices and biomanufacturing methods and utilizing mammalian cell lines and cell and gene therapy products to generate tissue or nutritional proteins for human consumption. However, significant improvements and modifications are needed for the process to be cost efficient and robust enough to be brought to production at scale for food supply. Here, we review the scientific and social challenges in transforming cultured meat into a viable commercial option, covering aspects from cell selection and medium optimization to biomaterials, tissue engineering, regulation and consumer acceptance

    Neuroendocrine control of satiation

    Full text link

    Defining the Sequence Elements and Candidate Genes for the Coloboma Mutation.

    Get PDF
    The chicken coloboma mutation exhibits features similar to human congenital developmental malformations such as ocular coloboma, cleft-palate, dwarfism, and polydactyly. The coloboma-associated region and encoded genes were investigated using advanced genomic, genetic, and gene expression technologies. Initially, the mutation was linked to a 990 kb region encoding 11 genes; the application of the genetic and genomic tools led to a reduction of the linked region to 176 kb and the elimination of 7 genes. Furthermore, bioinformatics analyses of capture array-next generation sequence data identified genetic elements including SNPs, insertions, deletions, gaps, chromosomal rearrangements, and miRNA binding sites within the introgressed causative region relative to the reference genome sequence. Coloboma-specific variants within exons, UTRs, and splice sites were studied for their contribution to the mutant phenotype. Our compiled results suggest three genes for future studies. The three candidate genes, SLC30A5 (a zinc transporter), CENPH (a centromere protein), and CDK7 (a cyclin-dependent kinase), are differentially expressed (compared to normal embryos) at stages and in tissues affected by the coloboma mutation. Of these genes, two (SLC30A5 and CENPH) are considered high-priority candidate based upon studies in other vertebrate model systems

    Defining the Sequence Elements and Candidate Genes for the Coloboma Mutation

    Full text link
    The chicken coloboma mutation exhibits features similar to human congenital developmental malformations such as ocular coloboma, cleft-palate, dwarfism, and polydactyly. The coloboma-associated region and encoded genes were investigated using advanced genomic, genetic, and gene expression technologies. Initially, the mutation was linked to a 990 kb region encoding 11 genes; the application of the genetic and genomic tools led to a reduction of the linked region to 176 kb and the elimination of 7 genes. Furthermore, bioinformatics analyses of capture array-next generation sequence data identified genetic elements including SNPs, insertions, deletions, gaps, chromosomal rearrangements, and miRNA binding sites within the introgressed causative region relative to the reference genome sequence. Coloboma-specific variants within exons, UTRs, and splice sites were studied for their contribution to the mutant phenotype. Our compiled results suggest three genes for future studies. The three candidate genes, SLC30A5 (a zinc transporter), CENPH (a centromere protein), and CDK7 (a cyclin-dependent kinase), are differentially expressed (compared to normal embryos) at stages and in tissues affected by the coloboma mutation. Of these genes, two (SLC30A5 and CENPH) are considered high-priority candidate based upon studies in other vertebrate model systems
    corecore