6 research outputs found

    Keratins regulate colonic epithelial cell differentiation through the Notch1 signalling pathway

    Get PDF
    Keratins (K) are intermediate filament proteins important in stress protection and mechanical support of epithelial tissues. K8, K18 and K19 are the main colonic keratins, and K8-knockout (K8(-/-)) mice display a keratin dose-dependent hyperproliferation of colonic crypts and a colitis-phenotype. However, the impact of the loss of K8 on intestinal cell differentiation has so far been unknown. Here we show that K8 regulates Notch1 signalling activity and differentiation in the epithelium of the large intestine. Proximity ligation and immunoprecipitation assays demonstrate that K8 and Notch1 co-localize and interact in cell cultures, and in vivo in the colonic epithelial cells. K8 with its heteropolymeric partner K18 enhance Notch1 protein levels and activity in a dose dependent manner. The levels of the full-length Notch1 receptor (FLN), the Notch1 intracellular domain (NICD) and expression of Notch1 downstream target genes are reduced in the absence of K8, and the K8-dependent loss of Notch1 activity can be rescued with re-expression of K8/K18 in K8-knockout CRISPR/Cas9 Caco-2 cells protein levels. In vivo, K8 deletion with subsequent Notch1 downregulation leads to a shift in differentiation towards a goblet cell and enteroendocrine phenotype from an enterocyte cell fate. Furthermore, the K8(-/-) colonic hyperproliferation results from an increased number of transit amplifying progenitor cells in these mice. K8/K18 thus interact with Notch1 and regulate Notch1 signalling activity during differentiation of the colonic epithelium

    Decoding the PTM-switchboard of Notch

    No full text
    \u3cp\u3eThe developmentally indispensable Notch pathway exhibits a high grade of pleiotropism in its biological output. Emerging evidence supports the notion of post-translational modifications (PTMs) as a modus operandi controlling dynamic fine-tuning of Notch activity. Although, the intricacy of Notch post-translational regulation, as well as how these modifications lead to multiples of divergent Notch phenotypes is still largely unknown, numerous studies show a correlation between the site of modification and the output. These include glycosylation of the extracellular domain of Notch modulating ligand binding, and phosphorylation of the PEST domain controlling half-life of the intracellular domain of Notch. Furthermore, several reports show that multiple PTMs can act in concert, or compete for the same sites to drive opposite outputs. However, further investigation of the complex PTM crosstalk is required for a complete understanding of the PTM-mediated Notch switchboard. In this review, we aim to provide a consistent and up-to-date summary of the currently known PTMs acting on the Notch signaling pathway, their functions in different contexts, as well as explore their implications in physiology and disease. Furthermore, we give an overview of the present state of PTM research methodology, and allude to a future with PTM-targeted Notch therapeutics.\u3c/p\u3

    PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner

    No full text
    Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick central nervous system and in cultured myoblasts, Notch-stimulated cells were allowed to undergo differentiation. PKCζ phosphorylates membrane-tethered forms of Notch and regulates two distinct routing steps, depending on the Notch activation state. When Notch is activated, PKCζ promotes re-localization of Notch from late endosomes to the nucleus and enhances production of the Notch intracellular domain, which leads to increased Notch activity. In the non-activated state, PKCζ instead facilitates Notch receptor internalization, accompanied with increased ubiquitylation and interaction with the endosomal sorting protein Hrs. Collectively, these data identify PKCζ as a key regulator of Notch trafficking and demonstrate that distinct steps in intracellular routing are differentially modulated depending on Notch signaling status

    Decoding the Genetics and Underlying Mechanisms of Mood Disorders Sevilla D. Detera-Wadleigh and Takeo Yoshikawa

    No full text
    corecore