53 research outputs found

    Nanostructured target fabrication with metal and semiconductor nanoparticles

    Get PDF
    The development of ultra-intense high-energy (≫1 J) short (<1 ps) laser pulses in the last decade hasenabled the acceleration of high-energy short-pulse proton beams. A key parameter for enhancing theacceleration regime is the laser-to-target absorption, which heavily depends on the target structureand material. In this work, we present the realization of a nanostructured target with a sub-laserwavelength nano-layer in the front surface as a possible candidate for improving the absorption. Thenanostructuredfilm was realized by a simpler and cheaper method than using conventionallithographic techniques: A colloidal solution of metallic or semiconductor nanoparticles (NPs) wasproduced by laser ablation and, after a heating and sonication process, was spray-dried on the frontsurface of an aluminum target. The obtained nanostructuredfilm with a thickness of 1μm appears, atmorphological and chemical analysis, uniformly nanostructured and distributed on the target surfacewithout the presence of oxides or external contaminants. Finally, the size of the NPs can be tuned fromtens to hundreds of nanometers simply by varying the growth parameters (i.e., irradiation time,fluence, and laser beam energy

    In situ study of nucleation and aggregation phases for nanoparticles grown by laser-driven methods

    Get PDF
    In the last decades, nanomaterials and nanotechnologies have become fundamental and irreplaceable in many fields of science and technology. When used in applications, their properties depend on many factors such as size, shape, internal structure and composition. For this, exact knowledge of their structural features is essential when developing fabrication technologies and searching for new types of nanostructures or nanoparticles with specific properties. For the latter, the knowledge of the precise temporal evolution of the growth processes is fundamental when it comes to industrial production and applications. Here we present a method to control, with very high precision, the starting of the aggregation phase during the Laser Ablation in solution growth process. This is obtained by monitoring the optical absorption of the colloidal solution. We apply this control method on the most popular metallic nanoparticle materials (Ag, Al, Co, and Ti) and verify the technique using morphological analysis conducted by AFM and SEM microscopy. The experimental results are explained in terms of Mie extinction theory and Thermal Model for Laser Ablatio

    Laser-Accelerated proton beams as diagnostics for cultural heritage

    Get PDF
    This paper introduces the first use of laser-generated proton beams as diagnostic for materials of interest in the domain of Cultural Heritage. Using laser-accelerated protons, as generated by interaction of a high-power short-pulse laser with a solid target, we can produce proton-induced X-ray emission spectroscopies (PIXE). By correctly tuning the proton flux on the sample, we are able to perform the PIXE in a single shot without provoking more damage to the sample than conventional methodologies. We verify this by experimentally irradiating materials of interest in the Cultural Heritage with laser-accelerated protons and measuring the PIXE emission. The morphological and chemical analysis of the sample before and after irradiation are compared in order to assess the damage provoked to the artifact. Montecarlo simulations confirm that the temperature in the sample stays safely below the melting point. Compared to conventional diagnostic methodologies, laser-driven PIXE has the advantage of being potentially quicker and more efficien

    Laser-driven proton acceleration with nanostructured targets

    Get PDF
    Laser-driven particle acceleration has become a growing field of research, in particular for its numerous interesting applications. One of the most common proton acceleration mechanism that is obtained on typically available multi-hundred TW laser systems is based on the irradiation of thin solid metal foils by the intense laser, generating the proton acceleration on its rear target surface. The e_ciency of this acceleration scheme strongly depends on the type of target used. Improving the acceleration mechanism, i.e. enhancing parameters such as maximum proton energy, laminarity, e_ciency, monocromaticy, and number of accelerated particles, is heavily depending on the laser-to-target absorption, where obviously cheap and easy to implement targets are best candidates. In this work, we present nanostructured targets that are able to increase the absorption of light compared to what can be achieved with a classical solid (non-nanostructured) target and are produced with a method that is much simpler and cheaper than conventional lithographic processes. Several layers of gold nanoparticles were deposited on solid targets (aluminum, Mylar and multiwalled carbon nanotube buckypaper) and allow for an increased photon absorption. This ultimately permits to increase the laser-to-particle energy transfer, and thus to enhance the yield in proton production. Experimental characterization results on the nanostructured _lms are presented (UV-Vis spectroscopy and AFM), along with preliminary experimental proton spectra obtained at the JLF-TITAN laser facility at LLNL

    Optimizing laser coupling, matter heating, and particle acceleration from solids using multiplexed ultraintense lasers

    Get PDF
    Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations. Here, we investigate how to optimize their coupling with solid targets. Experimentally, we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside. The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations, revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection, which is one possible mechanism to boost electron energization. In addition, the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation. Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams
    • …
    corecore