930 research outputs found
Does the Sun shrink with increasing magnetic activity?
It has been demonstrated that frequencies of f-modes can be used to estimate
the solar radius to a good accuracy. These frequencies have been used to study
temporal variations in the solar radius with conflicting results. The variation
in f-mode frequencies is more complicated than what is assumed in these
studies. If a careful analysis is performed then it turns out that there is no
evidence for any variation in the solar radius.Comment: To appear in Astrophys.
Large scale flows in the solar interior: Effect of asymmetry in peak profiles
Ring diagram analysis can be used to study large scale velocity fields in the
outer part of the solar convection zone. All previous works assume that the
peak profiles in the solar oscillation power spectrum are symmetric. However,
it has now been demonstrated that the peaks are not symmetric. In this work we
study how the explicit use of asymmetric peak profiles in ring-diagram analysis
influences the estimated velocity fields. We find that the use of asymmetric
profiles leads to significant improvement in the fits, but the estimated
velocity fields are not substantially different from those obtained using a
symmetric profile to fit the peaks. The resulting velocity fields are compared
with those obtained by other investigators.Comment: To appear in Ap
Determining solar abundances using helioseismology
The recent downward revision of solar photospheric abundances of Oxygen and
other heavy elements has resulted in serious discrepancies between solar models
and solar structure as determined through helioseismology. In this work we
investigate the possibility of determining the solar heavy-element abundance
without reference to spectroscopy by using helioseismic data. Using the
dimensionless sound-speed derivative in the solar convection zone, we find that
the heavy element abundance, Z, of 0.0172 +/- 0.002, which is closer to the
older, higher value of the abundances.Comment: To appear in Ap
Solar rotation rate and its gradients during cycle 23
Available helioseismic data now span almost the entire solar activity cycle
23 making it possible to study solar-cycle related changes of the solar
rotation rate in detail. In this paper we study how the solar rotation rate, in
particular, the zonal flows change with time. In addition to the zonal flows
that show a well known pattern in the solar convection zone, we also study
changes in the radial and latitudinal gradients of the rotation rate,
particularly in the shear layer that is present in the immediate sub-surface
layers of the Sun. In the case of the zonal-flow pattern, we find that the band
indicating fast rotating region close to the equator seems to have bifurcated
around 2005. Our investigation of the rotation-rate gradients show that the
relative variation in the rotation-rate gradients is about 20% or more of their
average values, which is much larger than the relative variation in the
rotation rate itself. These results can be used to test predictions of various
solar dynamo models.Comment: To appear in ApJ. Fig 5 has been corrected in this versio
Epidemiological models for the spread of anti-malarial resistance
BACKGROUND: The spread of drug resistance is making malaria control increasingly difficult. Mathematical models for the transmission dynamics of drug sensitive and resistant strains can be a useful tool to help to understand the factors that influence the spread of drug resistance, and they can therefore help in the design of rational strategies for the control of drug resistance. METHODS: We present an epidemiological framework to investigate the spread of anti-malarial resistance. Several mathematical models, based on the familiar Macdonald-Ross model of malaria transmission, enable us to examine the processes and parameters that are critical in determining the spread of resistance. RESULTS: In our simplest model, resistance does not spread if the fraction of infected individuals treated is less than a threshold value; if drug treatment exceeds this threshold, resistance will eventually become fixed in the population. The threshold value is determined only by the rates of infection and the infectious periods of resistant and sensitive parasites in untreated and treated hosts, whereas the intensity of transmission has no influence on the threshold value. In more complex models, where hosts can be infected by multiple parasite strains or where treatment varies spatially, resistance is generally not fixed, but rather some level of sensitivity is often maintained in the population. CONCLUSIONS: The models developed in this paper are a first step in understanding the epidemiology of anti-malarial resistance and evaluating strategies to reduce the spread of resistance. However, specific recommendations for the management of resistance need to wait until we have more data on the critical parameters underlying the spread of resistance: drug use, spatial variability of treatment and parasite migration among areas, and perhaps most importantly, cost of resistance
Zonal Velocity Bands and the Solar Activity Cycle
We compare the zonal flow pattern in subsurface layers of the Sun with the
distribution of surface magnetic features like sunspots and polar faculae. We
demonstrate that in the activity belt, the butterfly pattern of sunspots
coincides with the fast stream of zonal flows, although part of the sunspot
distribution does spill over to the slow stream. At high latitudes, the polar
faculae and zonal flow bands have similar distributions in the spatial and
temporal domains.Comment: To appear in Solar Physic
Solar-cycle variation of the sound-speed asphericity from GONG and MDI data 1995-2000
We study the variation of the frequency splitting coefficients describing the
solar asphericity in both GONG and MDI data, and use these data to investigate
temporal sound-speed variations as a function of both depth and latitude during
the period from 1995-2000 and a little beyond. The temporal variations in even
splitting coefficients are found to be correlated to the corresponding
component of magnetic flux at the solar surface. We confirm that the
sound-speed variations associated with the surface magnetic field are
superficial. Temporally averaged results show a significant excess in sound
speed around 0.92 solar radii and latitude of 60 degrees.Comment: To be published in MNRAS, accepted July 200
Sensitivity of Helioseismic Measurements of Normal-mode Coupling to Flows and Sound-speed Perturbations
In this article, we derive and compute the sensitivity of measurements of
coupling between normal modes of oscillation in the Sun to underlying flows.
The theory is based on first-Born perturbation theory, and the analysis is
carried out using the formalism described by \citet{lavely92}. Albeit tedious,
we detail the derivation and compute the sensitivity of specific pairs of
coupled normal modes to anomalies in the interior. Indeed, these kernels are
critical for the accurate inference of convective flow amplitudes and
large-scale circulations in the solar interior. We resolve some inconsistencies
in the derivation of \citet{lavely92} and reformulate the fluid-continuity
condition. We also derive and compute sound-speed kernels, paving the way for
inverting for thermal anomalies alongside flows.Comment: 24 pages, 8 Figures; MNRA
- …