4,266 research outputs found

    Comparing Lumped and Distributed Model in Hydrological Services - Impacts of Climate Change - a Case Study in Taiwan

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchive

    Time series classification with ensembles of elastic distance measures

    Get PDF
    Several alternative distance measures for comparing time series have recently been proposed and evaluated on time series classification (TSC) problems. These include variants of dynamic time warping (DTW), such as weighted and derivative DTW, and edit distance-based measures, including longest common subsequence, edit distance with real penalty, time warp with edit, and move–split–merge. These measures have the common characteristic that they operate in the time domain and compensate for potential localised misalignment through some elastic adjustment. Our aim is to experimentally test two hypotheses related to these distance measures. Firstly, we test whether there is any significant difference in accuracy for TSC problems between nearest neighbour classifiers using these distance measures. Secondly, we test whether combining these elastic distance measures through simple ensemble schemes gives significantly better accuracy. We test these hypotheses by carrying out one of the largest experimental studies ever conducted into time series classification. Our first key finding is that there is no significant difference between the elastic distance measures in terms of classification accuracy on our data sets. Our second finding, and the major contribution of this work, is to define an ensemble classifier that significantly outperforms the individual classifiers. We also demonstrate that the ensemble is more accurate than approaches not based in the time domain. Nearly all TSC papers in the data mining literature cite DTW (with warping window set through cross validation) as the benchmark for comparison. We believe that our ensemble is the first ever classifier to significantly outperform DTW and as such raises the bar for future work in this area

    Efficiency Benefits Using the Terminal Area Precision Scheduling and Spacing System

    Get PDF
    NASA has developed a capability for terminal area precision scheduling and spacing (TAPSS) to increase the use of fuel-efficient arrival procedures during periods of traffic congestion at a high-density airport. Sustained use of fuel-efficient procedures throughout the entire arrival phase of flight reduces overall fuel burn, greenhouse gas emissions and noise pollution. The TAPSS system is a 4D trajectory-based strategic planning and control tool that computes schedules and sequences for arrivals to facilitate optimal profile descents. This paper focuses on quantifying the efficiency benefits associated with using the TAPSS system, measured by reduction of level segments during aircraft descent and flight distance and time savings. The TAPSS system was tested in a series of human-in-the-loop simulations and compared to current procedures. Compared to the current use of the TMA system, simulation results indicate a reduction of total level segment distance by 50% and flight distance and time savings by 7% in the arrival portion of flight (~200 nm from the airport). The TAPSS system resulted in aircraft maintaining continuous descent operations longer and with more precision, both achieved under heavy traffic demand levels

    Flow Separation Control on A Full-Scale Vertical Tail Model Using Sweeping Jet Actuators

    Get PDF
    This paper describes test results of a joint NASA/Boeing research effort to advance Active Flow Control (AFC) technology to enhance aerodynamic efficiency. A full-scale Boeing 757 vertical tail model equipped with sweeping jets AFC was tested at the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The flow separation control optimization was performed at 100 knots, a maximum rudder deflection of 30deg, and sideslip angles of 0deg and -7.5deg. Greater than 20% increments in side force were achieved at the two sideslip angles with a 31-actuator AFC configuration. Flow physics and flow separation control associated with the AFC are presented in detail. AFC caused significant increases in suction pressure on the actuator side and associated side force enhancement. The momentum coefficient (C sub mu) is shown to be a useful parameter to use for scaling-up sweeping jet AFC from sub-scale tests to full-scale applications. Reducing the number of actuators at a constant total C(sub mu) of approximately 0.5% and tripling the actuator spacing did not significantly affect the flow separation control effectiveness

    Performance Enhancement of a Full-Scale Vertical Tail Model Equipped with Active Flow Control

    Get PDF
    This paper describes wind tunnel test results from a joint NASA/Boeing research effort to advance active flow control (AFC) technology to enhance aerodynamic efficiency. A full-scale Boeing 757 vertical tail model equipped with sweeping jet actuators was tested at the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel (40x80) at NASA Ames Research Center. The model was tested at a nominal airspeed of 100 knots and across rudder deflections and sideslip angles that covered the vertical tail flight envelope. A successful demonstration of AFC-enhanced vertical tail technology was achieved. A 31- actuator configuration significantly increased side force (by greater than 20%) at a maximum rudder deflection of 30deg. The successful demonstration of this application has cleared the way for a flight demonstration on the Boeing 757 ecoDemonstrator in 2015

    The Dark Energy Survey Data Management System

    Full text link
    The Dark Energy Survey collaboration will study cosmic acceleration with a 5000 deg2 griZY survey in the southern sky over 525 nights from 2011-2016. The DES data management (DESDM) system will be used to process and archive these data and the resulting science ready data products. The DESDM system consists of an integrated archive, a processing framework, an ensemble of astronomy codes and a data access framework. We are developing the DESDM system for operation in the high performance computing (HPC) environments at NCSA and Fermilab. Operating the DESDM system in an HPC environment offers both speed and flexibility. We will employ it for our regular nightly processing needs, and for more compute-intensive tasks such as large scale image coaddition campaigns, extraction of weak lensing shear from the full survey dataset, and massive seasonal reprocessing of the DES data. Data products will be available to the Collaboration and later to the public through a virtual-observatory compatible web portal. Our approach leverages investments in publicly available HPC systems, greatly reducing hardware and maintenance costs to the project, which must deploy and maintain only the storage, database platforms and orchestration and web portal nodes that are specific to DESDM. In Fall 2007, we tested the current DESDM system on both simulated and real survey data. We used Teragrid to process 10 simulated DES nights (3TB of raw data), ingesting and calibrating approximately 250 million objects into the DES Archive database. We also used DESDM to process and calibrate over 50 nights of survey data acquired with the Mosaic2 camera. Comparison to truth tables in the case of the simulated data and internal crosschecks in the case of the real data indicate that astrometric and photometric data quality is excellent.Comment: To be published in the proceedings of the SPIE conference on Astronomical Instrumentation (held in Marseille in June 2008). This preprint is made available with the permission of SPIE. Further information together with preprint containing full quality images is available at http://desweb.cosmology.uiuc.edu/wik

    Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys

    Get PDF
    We transplanted kidneys from α1,3-galactosyltransferase knockout (GalT-KO) pigs into six baboons using two different immunosuppressive regimens, but most of the baboons died from severe acute humoral xenograft rejection. Circulating induced antibodies to non-Gal antigens were markedly elevated at rejection, which mediated strong complement-dependent cytotoxicity against GalT-KO porcine target cells. These data suggest that antibodies to non-Gal antigens will present an additional barrier to transplantation of organs from GalT-KO pigs to humans. © 2005 Nature Publishing Group

    Hedgehog Spin-texture and Berry's Phase tuning in a Magnetic Topological Insulator

    Full text link
    Understanding and control of spin degrees of freedom on the surfaces of topological materials are key to future applications as well as for realizing novel physics such as the axion electrodynamics associated with time-reversal (TR) symmetry breaking on the surface. We experimentally demonstrate magnetically induced spin reorientation phenomena simultaneous with a Dirac-metal to gapped-insulator transition on the surfaces of manganese-doped Bi2Se3 thin films. The resulting electronic groundstate exhibits unique hedgehog-like spin textures at low energies, which directly demonstrate the mechanics of TR symmetry breaking on the surface. We further show that an insulating gap induced by quantum tunnelling between surfaces exhibits spin texture modulation at low energies but respects TR invariance. These spin phenomena and the control of their Fermi surface geometrical phase first demonstrated in our experiments pave the way for the future realization of many predicted exotic magnetic phenomena of topological origin.Comment: 38 pages, 18 Figures, Includes new text, additional datasets and interpretation beyond arXiv:1206.2090, for the final published version see Nature Physics (2012
    corecore