26 research outputs found
The First Flight of the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)
The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) sounding rocket
experiment launched on July 30, 2021 from the White Sands Missile Range in New
Mexico. MaGIXS is a unique solar observing telescope developed to capture X-ray
spectral images, in the 6 - 24 Angstrom wavelength range, of coronal active
regions. Its novel design takes advantage of recent technological advances
related to fabricating and optimizing X-ray optical systems as well as
breakthroughs in inversion methodologies necessary to create spectrally pure
maps from overlapping spectral images. MaGIXS is the first instrument of its
kind to provide spatially resolved soft X-ray spectra across a wide field of
view. The plasma diagnostics available in this spectral regime make this
instrument a powerful tool for probing solar coronal heating. This paper
presents details from the first MaGIXS flight, the captured observations, the
data processing and inversion techniques, and the first science results.Comment: 20 pages, 18 figure
The First Flight of the Marshall Grazing Incidence X-Ray Spectrometer (MaGIXS)
The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) sounding rocket experiment launched on 2021 July 30 from the White Sands Missile Range in New Mexico. MaGIXS is a unique solar observing telescope developed to capture X-ray spectral images of coronal active regions in the 6–24 Å wavelength range. Its novel design takes advantage of recent technological advances related to fabricating and optimizing X-ray optical systems, as well as breakthroughs in inversion methodologies necessary to create spectrally pure maps from overlapping spectral images. MaGIXS is the first instrument of its kind to provide spatially resolved soft X-ray spectra across a wide field of view. The plasma diagnostics available in this spectral regime make this instrument a powerful tool for probing solar coronal heating. This paper presents details from the first MaGIXS flight, the captured observations, the data processing and inversion techniques, and the first science results
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Practical Large-Scale Synthesis of 6‑Bromo-2-naphthylmethanesulfonamide Using Semmler–Wolff Reaction
A practical, scalable synthetic process
for a sulfonamide was developed
featuring a Semmler–Wolff aromatization as the key step. The
optimized reaction conditions using HCl in HOAc give directly the
desired naphthylamine in high yield as opposed to a naphthylacetamide
commonly formed in the Semmler–Wolff reactions. One little
known byproduct of anomalous rearrangement, ketoamine, was observed
and a mechanism proposed to explain its formation. Employing the optimized
process, 360 kg was prepared to support drug development
Optimizing Habitat Protection Using Demographic Models of Population Viability
Expanding habitat protection is a common tactic for species conservation. When unprotected habitat is privately owned, decisions must be made about which areas to protect by land purchase or conservation easement. To address this problem, we developed an optimization framework for choosing the habitat-protection strategy that minimizes the risk of population extinction subject to an upper bound on funding. The framework is based on the idea that an extinction-risk function that predicts the relative effects of varying the quantity and quality of habitat can be estimated from the results of a demographic model of population viability. We used the framework to address the problem of expanding the protected habitat of a core population of the endangered San Joaquin kit fox (Vulpes macrotis mutica) in the Panoche area in central California. We first developed a stochastic demographic model of the kit fox population. Predictions from the simulation model were used to estimate an extinction-risk function that depended on areas of good- and fair-quality habitat. The risk function was combined with costs of habitat protection to determine cost-efficient protection strategies and risk-cost curves showing how extinction risk could be reduced at minimum cost for increasing levels of funding. One important result was that cost-efficient shares of the budget used to protect different types of habitat changed as the budget increased and depended on the relative costs of available habitat and the relative effects of habitat protection on extinction risk. Another important finding was the sensitivity of the location and slope of the risk-cost curve to assumptions about the spatial configuration of available habitat. When the location and slope of the risk-cost curve are sensitive to model assumptions, resulting predictions of extinction risk and risk reduction per unit cost should be used very cautiously in ranking conservation options among different species or populations. The application is an example of how the results of a complex demographic model of population viability can be synthesized for use in optimization analyses to determine cost-efficient habitat-protection strategies and risk-cost tradeoffs