177 research outputs found
Quantitative analysis of TM lateral leakage in foundry fabricated silicon Rib waveguides
We show that thin, shallow ridge, silicon-on-insulator waveguides exhibiting a lateral leakage behavior can be designed and fabricated using a standard silicon photonic foundry platform. We analyze the propagation loss through the observation of the transmitted TM polarized guided mode and TE polarized radiation and experimentally demonstrate that propagation losses as low as 0.087 dB/mm can be achieved. This demonstration will open a new frontier for practical devices exploiting a lateral leakage behavior with potential applications in the fields of biosensing and quantum optics among others
Investigation into Reynolds Number Effects on a Biomimetic Flapping Wing
This research investigated the behavior of a Manduca sexta inspired biomimetic wing as a function of Reynolds number by measuring the aerodynamic forces produced by varying the characteristic wing length and testing at air densities from atmospheric to near vacuum. A six degree of freedom balance was used to measure forces and moments, while high speed cameras were used to measure wing stroke angle. An in-house created graphical user interface was used to vary the voltage of the drive signal sent to the piezoelectric actuator which determined the wing stroke angle. The Air Force Institute of Technology baseline 50 mm wing was compared to wings manufactured with 55, 60, 65, and 70 mm spans, while maintaining a constant aspect ratio. Tests were conducted in a vacuum chamber at air densities between 0.5% and 100% of atmospheric pressure. Increasing the wingspan increased the wing’s weight, which reduced the first natural frequency; and did not result in an increase in vertical force over the baseline 50 mm wing. However, if the decrease in natural frequency corresponding to the increased wing span was counteracted by increasing the thickness of the joint material in the linkage mechanism, vertical force production increased over the baseline wing planform. Of the wings built with the more robust flapping mechanism, the 55 mm wing span produced 95% more vertical force at a 26% higher flapping frequency, while the 70 mm wing span produced 165% more vertical force at a 10% lower frequency than the Air Force Institute of Technology baseline wing. Negligible forces and moments were measured at vacuum, where the wing exhibited predominantly inertial motion, revealing flight forces measured in atmosphere are almost wholly limited to interaction with the surrounding air. Lastly, there was a rough correlation between Reynolds number and vertical force, indicating Reynolds number is a useful modelling parameter to predict lift and corresponding aerodynamic coefficients for a specific wing design
Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer
Anthony V Nguyen1, Micaela Martinez1, Michael J Stamos2, Mary P Moyer3, Kestutis Planutis1, Christopher Hope1 Randall F Holcombe11Division of Hematology/Oncology and Chao Family Comprehensive Cancer Center, 2Department of Surgery, University of California, Irvine CA, USA; 3Incell Corporation, San Antonio, TX USAContext: Resveratrol exhibits colon cancer prevention activity in animal models; it is purported to have this activity in humans and inhibit a key signaling pathway involved in colon cancer initiation, the Wnt pathway, in vitro.Design: A phase I pilot study in patients with colon cancer was performed to evaluate the effects of a low dose of plant-derived resveratrol formulation and resveratrol-containing freeze-dried grape powder (GP) on Wnt signaling in the colon. Eight patients were enrolled and normal colonic mucosa and colon cancer tissue were evaluated by Wnt pathway-specific microarray and quantitative real-time polymerase chain reaction (qRT-PCR) pre- and post-exposure to resveratrol/GP.Results: Based on the expression of a panel of Wnt target genes, resveratrol/GP did not inhibit the Wnt pathway in colon cancer but had significant (p < 0.03) activity in inhibiting Wnt target gene expression in normal colonic mucosa. The greatest effect on Wnt target gene expression was seen following ingestion of 80 g of GP per day (p < 0.001). These results were confirmed with qRT-PCR of cyclinD1 and axinII. The inhibitory effect of GP on Wnt signal throughput was confirmed in vitro with a normal colonic mucosa-derived cell line.Conclusions: These data suggest that GP, which contains low dosages of resveratrol in combination with other bioactive components, can inhibit the Wnt pathway in vivo and that this effect is confined to the normal colonic mucosa. Further study of dietary supplementation with resveratrol-containing foods such as whole grapes or GP as a potential colon cancer preventive strategy is warranted.Trial registration: NCT00256334.Keywords: resveratrol, clinical trial, colon cancer, Wnt signaling, grapes, cancer preventio
In search of the authentic nation: landscape and national identity in Canada and Switzerland
While the study of nationalism and national identity has flourished in the last decade, little attention has been devoted to the conditions under which natural environments acquire significance in definitions of nationhood. This article examines the identity-forming role of landscape depictions in two polyethnic nation-states: Canada and Switzerland. Two types of geographical national identity are identified. The first – what we call the ‘nationalisation of nature’– portrays zarticular landscapes as expressions of national authenticity. The second pattern – what we refer to as the ‘naturalisation of the nation’– rests upon a notion of geographical determinism that depicts specific landscapes as forces capable of determining national identity. The authors offer two reasons why the second pattern came to prevail in the cases under consideration: (1) the affinity between wild landscape and the Romantic ideal of pure, rugged nature, and (2) a divergence between the nationalist ideal of ethnic homogeneity and the polyethnic composition of the two societies under consideration
F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase
There is an important medical need for new antifungal agents with novel mechanisms of action to treat the increasing number of patients with life-threatening systemic fungal disease and to overcome the growing problem of resistance to current therapies. F901318, the leading representative of a novel class of drug, the orotomides, is an antifungal drug in clinical development that demonstrates excellent potency against a broad range of dimorphic and filamentous fungi. In vitro susceptibility testing of F901318 against more than 100 strains from the four main pathogenic Aspergillus spp. revealed minimal inhibitory concentrations of ≤0.06 µg/mL—greater potency than the leading antifungal classes. An investigation into the mechanism of action of F901318 found that it acts via inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) in a fungal-specific manner. Homology modeling of Aspergillus fumigatus DHODH has identified a predicted binding mode of the inhibitor and important interacting amino acid residues. In a murine pulmonary model of aspergillosis, F901318 displays in vivo efficacy against a strain of A. fumigatus sensitive to the azole class of antifungals and a strain displaying an azole-resistant phenotype. F901318 is currently in late Phase 1 clinical trials, offering hope that the antifungal armamentarium can be expanded to include a class of agent with a mechanism of action distinct from currently marketed antifungals
Biochemical characterization of protease activity of Nsp3 from SARS-CoV-2 and its inhibition by nanobodies
Of the 16 non-structural proteins (Nsps) encoded by SARS CoV-2, Nsp3 is the largest and plays important roles in the viral life cycle. Being a large, multidomain, transmembrane protein, Nsp3 has been the most challenging Nsp to characterize. Encoded within Nsp3 is the papain-like protease domain (PLpro) that cleaves not only the viral polypeptide but also K48-linked polyubiquitin and the ubiquitin-like modifier, ISG15, from host cell proteins. We here compare the interactors of PLpro and Nsp3 and find a largely overlapping interactome. Intriguingly, we find that near full length Nsp3 is a more active protease compared to the minimal catalytic domain of PLpro. Using a MALDI-TOF based assay, we screen 1971 approved clinical compounds and identify five compounds that inhibit PLpro with IC50s in the low micromolar range but showed cross reactivity with other human deubiquitinases and had no significant antiviral activity in cellular SARS-CoV-2 infection assays. We therefore looked for alternative methods to block PLpro activity and engineered competitive nanobodies that bind to PLpro at the substrate binding site with nanomolar affinity thus inhibiting the enzyme. Our work highlights the importance of studying Nsp3 and provides tools and valuable insights to investigate Nsp3 biology during the viral infection cycle
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) Spectrographs
We describe the design and performance of the near-infrared (1.51--1.70
micron), fiber-fed, multi-object (300 fibers), high resolution (R =
lambda/delta lambda ~ 22,500) spectrograph built for the Apache Point
Observatory Galactic Evolution Experiment (APOGEE). APOGEE is a survey of ~
10^5 red giant stars that systematically sampled all Milky Way populations
(bulge, disk, and halo) to study the Galaxy's chemical and kinematical history.
It was part of the Sloan Digital Sky Survey III (SDSS-III) from 2011 -- 2014
using the 2.5 m Sloan Foundation Telescope at Apache Point Observatory, New
Mexico. The APOGEE-2 survey is now using the spectrograph as part of SDSS-IV,
as well as a second spectrograph, a close copy of the first, operating at the
2.5 m du Pont Telescope at Las Campanas Observatory in Chile. Although several
fiber-fed, multi-object, high resolution spectrographs have been built for
visual wavelength spectroscopy, the APOGEE spectrograph is one of the first
such instruments built for observations in the near-infrared. The instrument's
successful development was enabled by several key innovations, including a
"gang connector" to allow simultaneous connections of 300 fibers; hermetically
sealed feedthroughs to allow fibers to pass through the cryostat wall
continuously; the first cryogenically deployed mosaic volume phase holographic
grating; and a large refractive camera that includes mono-crystalline silicon
and fused silica elements with diameters as large as ~ 400 mm. This paper
contains a comprehensive description of all aspects of the instrument including
the fiber system, optics and opto-mechanics, detector arrays, mechanics and
cryogenics, instrument control, calibration system, optical performance and
stability, lessons learned, and design changes for the second instrument.Comment: 81 pages, 67 figures, PASP, accepte
PPARα and PPARγ activation is associated with pleural mesothelioma invasion but therapeutic inhibition is ineffective
Mesothelioma is a cancer that typically originates in the pleura of the lungs. It rapidly invades the surrounding tissues, causing pain and shortness of breath. We compared cell lines injected either subcutaneously or intrapleurally and found that only the latter resulted in invasive and rapid growth. Pleural tumors displayed a transcriptional signature consistent with increased activity of nuclear receptors PPARα and PPARγ and with an increased abundance of endogenous PPAR-activating ligands. We found that chemical probe GW6471 is a potent, dual PPARα/γ antagonist with anti-invasive and anti-proliferative activity in vitro. However, administration of GW6471 at doses that provided sustained plasma exposure levels sufficient for inhibition of PPARα/γ transcriptional activity did not result in significant anti-mesothelioma activity in mice. Lastly, we demonstrate that the in vitro anti-tumor effect of GW6471 is off-target. We conclude that dual PPARα/γ antagonism alone is not a viable treatment modality for mesothelioma
- …