6,628 research outputs found

    The Spitzer South Pole Telescope Deep Field Survey: Linking galaxies and halos at z=1.5

    Full text link
    We present an analysis of the clustering of high-redshift galaxies in the recently completed 94 deg2^2 Spitzer-SPT Deep Field survey. Applying flux and color cuts to the mid-infrared photometry efficiently selects galaxies at z1.5z\sim1.5 in the stellar mass range 10101011M10^{10}-10^{11}M_\odot, making this sample the largest used so far to study such a distant population. We measure the angular correlation function in different flux-limited samples at scales >6>6^{\prime \prime} (corresponding to physical distances >0.05>0.05 Mpc) and thereby map the one- and two-halo contributions to the clustering. We fit halo occupation distributions and determine how the central galaxy's stellar mass and satellite occupation depend on the halo mass. We measure a prominent peak in the stellar-to-halo mass ratio at a halo mass of log(Mhalo/M)=12.44±0.08\log(M_{\rm halo} / M_\odot) = 12.44\pm0.08, 4.5 times higher than the z=0z=0 value. This supports the idea of an evolving mass threshold above which star formation is quenched. We estimate the large-scale bias in the range bg=24b_g=2-4 and the satellite fraction to be fsat0.2f_\mathrm{sat}\sim0.2, showing a clear evolution compared to z=0z=0. We also find that, above a given stellar mass limit, the fraction of galaxies that are in similar mass pairs is higher at z=1.5z=1.5 than at z=0z=0. In addition, we measure that this fraction mildly increases with the stellar mass limit at z=1.5z=1.5, which is the opposite of the behavior seen at low-redshift.Comment: 32 pages, 22 figures. Published in MNRA

    CaloMan: Fast generation of calorimeter showers with density estimation on learned manifolds

    Get PDF
    Precision measurements and new physics searches at the Large Hadron Collider require efficient simulations of particle propagation and interactions within the detectors. The most computationally expensive simulations involve calorimeter showers. Advances in deep generative modelling - particularly in the realm of high-dimensional data - have opened the possibility of generating realistic calorimeter showers orders of magnitude more quickly than physics-based simulation. However, the high-dimensional representation of showers belies the relative simplicity and structure of the underlying physical laws. This phenomenon is yet another example of the manifold hypothesis from machine learning, which states that high-dimensional data is supported on low-dimensional manifolds. We thus propose modelling calorimeter showers first by learning their manifold structure, and then estimating the density of data across this manifold. Learning manifold structure reduces the dimensionality of the data, which enables fast training and generation when compared with competing methods.Comment: Accepted to the Machine Learning and the Physical Sciences Workshop at NeurIPS 202

    The Clustering of Extremely Red Objects

    Get PDF
    We measure the clustering of Extremely Red Objects (EROs) in ~8 deg^2 of the NOAO Deep Wide Field Survey Bo\"otes field in order to establish robust links between ERO z~1.2 and local galaxy z<0.1 populations. Three different color selection criteria from the literature are analyzed to assess the consequences of using different criteria for selecting EROs. Specifically, our samples are (R-K_s)>5.0 (28,724 galaxies), (I-K_s)>4.0 (22,451 galaxies) and (I-[3.6])>5.0 (64,370 galaxies). Magnitude-limited samples show the correlation length (r_0) to increase for more luminous EROs, implying a correlation with stellar mass. We can separate star-forming and passive ERO populations using the (K_s-[24]) and ([3.6]-[24]) colors to K_s=18.4 and [3.6]=17.5, respectively. Star-forming and passive EROs in magnitude limited samples have different clustering properties and host dark halo masses, and cannot be simply understood as a single population. Based on the clustering, we find that bright passive EROs are the likely progenitors of >4L^* elliptical galaxies. Bright EROs with ongoing star formation were found to occupy denser environments than star-forming galaxies in the local Universe, making these the likely progenitors of >L^* local ellipticals. This suggests that the progenitors of massive >4L^* local ellipticals had stopped forming stars by z>1.2, but that the progenitors of less massive ellipticals (down to L^*) can still show significant star formation at this epoch.Comment: 19 pages, 16 figures, 4 tables, Accepted to ApJ 27th November 201

    Multiaperture UBVRIzJHKUBVRIzJHK Photometry of Galaxies in the Coma Cluster

    Get PDF
    We present a set of UBVRIzJHKsUBVRIzJHK_s photometry for 745 J+HJ+H band selected objects in a 22.5×29.222.5' \times 29.2' region centered on the core of the Coma cluster. This includes 516 galaxies and is at least 80% complete to H=16, with a spectroscopically complete sample of 111 cluster members (nearly all with morphological classification) for H<14.5H < 14.5. For each object we present total \cite{kron80} magnitudes and aperture photometry. As an example, we use these data to derive color-magnitude relations for Coma early-type galaxies, measure the intrinsic scatter of these relations and its dependence on galaxy mass, and address the issue of color gradients. We find that the color gradients are mild and that the intrinsic scatter about the color-magnitude relation is small (0.05\sim 0.05 mag in UVU-V and less than 0.03\sim 0.03 in BRB-R, VIV-I or JKJ-K). There is no evidence that the intrinsic scatter varies with galaxy luminosity, suggesting that the cluster red sequence is established at early epochs over a range of 100\sim 100 in stellar mass.Comment: 41 pages, 5 figures, 18 data tables attached to source files or available on request from R. De propris. Accepted for publication in Astrophysical Journal Supplement Serie

    RCS2 J232727.6-020437: An Efficient Cosmic Telescope at z=0.6986z=0.6986

    Full text link
    We present a detailed gravitational lens model of the galaxy cluster RCS2 J232727.6-020437. Due to cosmological dimming of cluster members and ICL, its high redshift (z=0.6986z=0.6986) makes it ideal for studying background galaxies. Using new ACS and WFC3/IR HST data, we identify 16 multiple images. From MOSFIRE follow up, we identify a strong emission line in the spectrum of one multiple image, likely confirming the redshift of that system to z=2.083z=2.083. With a highly magnified (μ2\mu\gtrsim2) source plane area of 0.7\sim0.7 arcmin2^2 at z=7z=7, RCS2 J232727.6-020437 has a lensing efficiency comparable to the Hubble Frontier Fields clusters. We discover four highly magnified z7z\sim7 candidate Lyman-break galaxies behind the cluster, one of which may be multiply-imaged. Correcting for magnification, we find that all four galaxies are fainter than 0.5L0.5 L_{\star}. One candidate is detected at >10σ{>10\sigma} in both Spitzer/IRAC [3.6] and [4.5] channels. A spectroscopic follow-up with MOSFIRE does not result in the detection of the Lyman-alpha emission line from any of the four candidates. From the MOSFIRE spectra we place median upper limits on the Lyman-alpha flux of 514×1019ergs1cm25-14 \times 10^{-19}\, \mathrm{erg \,\, s^{-1} cm^{-2}} (5σ5\sigma).Comment: 14 pages, 9 figures, submitted to ApJ on 3/06/201
    corecore