353 research outputs found
The effect of plastic deformation on the thermal conductivity of copper alloys.
The thermal conductivity of a specimen of alpha-brass has been measured and the dislocation-phonon scattering power, sigma, deduced. The dislocation density was determined by transmission electron microscopy. By comparison with similar measurements made on copper-aluminium alloys (Salter, 1965), it has been shown that sigma depends on the type and concentration of solute element and not upon the dislocation arrangement. A theory to account for the variation in sigma (Klemens, 1968) , has been critically considered. For annealed specimens at liquid helium temperatures the lattice thermal conductivity, limited by electron-phonon scattering, has a quadratic temperature dependence. However, for deformed specimens deviations from a pure T[2] dependence were found and have been attributed to the scattering of phonons by dipole dislocations. Measurements have been made of the thermal conductivity of specimens of Cu+2at.%Al, Cu+12at.%Al, and Cu+10at.%Au after successive amounts of tensile deformation. The value of sigma for the latter alloy has been deduced. The results are used to provide information on the mechanism of work hardening in these materials. It is shown that the important parameter is the relative atomic size of solute and solvent and not the electron concentration. Measurements of the residual electrical resistivity of the specimens yield information on the variation in stacking fault widths with deformation
Permafrost, Lakes, and Climate-Warming Methane Feedback: What is the Worst We Can Expect?
http://globalchange.mit.edu/research/publications/2275Permafrost degradation is likely enhanced by climate warming. Subsequent landscape subsidence and
hydrologic changes support expansion of lakes and wetlands. Their anaerobic environments can act as
strong emission sources of methane and thus represent a positive feedback to climate warming. Using an
integrated earth-system model framework, which considers the range of policy and uncertainty in climatechange
projections, we examine the influence of near-surface permafrost thaw on the prevalence of lakes,
its subsequent methane emission, and potential feedback under climate warming. We find that increases in
atmospheric CH4 and radiative forcing from increased lake CH4 emissions are small, particularly when
weighed against unconstrained human emissions. The additional warming from these methane sources,
across the range of climate policy and response, is no greater than 0.1 C by 2100. Further, for this temperature
feedback to be discernable by 2100 would require at least an order of magnitude larger methaneemission
response. Overall, the biogeochemical climate-warming feedback from boreal and Arctic lake
emissions is relatively small whether or not humans choose to constrain global emissions.This work was supported under the Department of Energy Climate Change Prediction Program
Grant DE-PS02-08ER08-05. The authors gratefully acknowledge this as well as additional
financial support provided by the MIT Joint Program on the Science and Policy of Global Change
through a consortium of industrial sponsors and Federal grants. Development of the IGSM
applied in this research is supported by the U.S. Department of Energy, Office of Science
(DE-FG02-94ER61937); the U.S. Environmental Protection Agency, EPRI, and other U.S.
government agencies and a consortium of 40 industrial and foundation sponsors
Non-detection of a statistically anisotropic power spectrum in large-scale structure
We search a sample of photometric luminous red galaxies (LRGs) measured by
the Sloan Digital Sky Survey (SDSS) for a quadrupolar anisotropy in the
primordial power spectrum, in which P(\vec{k}) is an isotropic power spectrum
P(k) multiplied by a quadrupolar modulation pattern. We first place limits on
the 5 coefficients of a general quadrupole anisotropy. We also consider
axisymmetric quadrupoles of the form P(\vec{k}) = P(k){1 +
g_*[(\hat{k}\cdot\hat{n})^2-1/3]} where \hat{n} is the axis of the anisotropy.
When we force the symmetry axis \hat{n} to be in the direction (l,b)=(94
degrees,26 degrees) identified in the recent Groeneboom et al. analysis of the
cosmic microwave background, we find g_*=0.006+/-0.036 (1 sigma). With uniform
priors on \hat{n} and g_* we find that -0.41<g_*<+0.38 with 95% probability,
with the wide range due mainly to the large uncertainty of asymmetries aligned
with the Galactic Plane. In none of these three analyses do we detect evidence
for quadrupolar power anisotropy in large scale structure.Comment: 23 pages; 10 figures; 3 tables; replaced with version published in
JCAP (added discussion of scale-varying quadrupolar anisotropy
The Hamiltonian limit of (3+1)D SU(3) lattice gauge theory on anisotropic lattices
The extreme anisotropic limit of Euclidean SU(3) lattice gauge theory is
examined to extract the Hamiltonian limit, using standard path integral Monte
Carlo (PIMC) methods. We examine the mean plaquette and string tension and
compare them to results obtained within the Hamiltonian framework of Kogut and
Susskind. The results are a significant improvement upon previous Hamiltonian
estimates, despite the extrapolation procedure necessary to extract
observables. We conclude that the PIMC method is a reliable method of obtaining
results for the Hamiltonian version of the theory. Our results also clearly
demonstrate the universality between the Hamiltonian and Euclidean formulations
of lattice gauge theory. It is particularly important to take into account the
renormalization of both the anisotropy, and the Euclidean coupling ,
in obtaining these results.Comment: 10 pages, 11 figure
Determination and Prediction of Zinc Speciation in Estuaries
Lowering of the estuarine Environmental Quality Standard for zinc in the UK to 121 nM reflects rising concern regarding zinc in ecosystems and is driving the need to better understand its fate and behavior and to develop and parametrize speciation models to predict the metal species present. For the first time, an extensive data set has been gathered for the speciation of zinc within an estuarine system with supporting physicochemical characterization, in particular dissolved organic carbon. WHAM/Model VII and Visual MINTEQ speciation models were used to simulate zinc speciation, using a combination of measured complexation variables and available defaults. Data for the five estuarine transects from freshwater to seawater endmembers showed very variable patterns of zinc speciation depending on river flows, seasons, and potential variations in metal and ligand inputs from in situ and ex situ sources. There were no clear relationships between free zinc ion concentration [Zn2+] and measured variables such as DOC concentration, humic and biological indices. Simulations of [Zn2+] carried out with both models at high salinities or by inputting site specific complexation capacities were successful, but overestimated [Zn2+] in low salinity waters, probably owing to an underestimation of the complexation strength of the ligands present. Uncertainties in predicted [Zn2+] are consistently smaller than standard deviations of the measured values, suggesting that the accuracy of the measurements is more critical than model uncertainty in evaluating the predictions
The discontinuous nature of chromospheric activity evolution
Chromospheric activity has been thought to decay smoothly with time and,
hence, to be a viable age indicator. Measurements in solar type stars in open
clusters seem to point to a different conclusion: chromospheric activity
undergoes a fast transition from Hyades level to that of the Sun after about 1
Gyr of main--sequence lifetime and any decaying trend before or after this
transition must be much less significant than the short term variations.Comment: 6 pages, 1 figure, to be published in Astrophysics and Space Scienc
Renormalization Scheme Dependence and the Problem of Theoretical Uncertainties in Next-Next-to-Leading Order QCD Predictions
Renormalization scheme uncertainties in the next-next-to-leading order QCD
predictions are discussed. To obtain an estimate of these uncertainties it is
proposed to compare predictions in all schemes that do not have unnaturally
large expansion coefficients. A concrete prescription for eliminating the
unnatural schemes is given, based on the requirement that large cancellations
in the expression for the characteristic renormalization scheme invariant
should be avoided. As an example the QCD corrections to the Bjorken sum rule
are considered. The importance of the next-next-to-leading order corrections
for a proper evaluation of perturbative QCD predictions is emphasized.Comment: 15 pages, 3 figures,Late
- …