140 research outputs found

    First detection of phase-dependent colliding wind X-ray emission outside the Milky Way

    Get PDF
    After having reported the detection of X-rays emitted by the peculiar system HD5980, we assess here the origin of this high-energy emission from additional X-ray observations obtained with XMM-Newton. This research provides the first detection of apparently periodic X-ray emission from hot gas produced by the collision of winds in an evolved massive binary outside the Milky Way. It also provides the first X-ray monitoring of a Luminous Blue Variable only years after its eruption and shows that the dominant source of the X-rays is not associated with the ejecta.Comment: 13 pages, 3 figures and 1 table, accepted for publication in ApJ (letters

    Spatially resolved STIS spectra of WR+OB binaries with colliding winds

    Get PDF
    We present spatially resolved spectra of the visual WR+OB massive binaries WR86, WR146, and WR147, obtained with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. The systems are classified as follows: WR86 = WC7 + B0 III, WR146 = WC6 + O8 I-IIf, WR147 = WN8 + O5-7 I-II(f). Both WR146 and WR147 are known to have strong non-thermal radio emission arising in a wind-wind collision shock zone between the WR and OB components. We find that the spectra of their O companions show Halpha profiles in emission, indicative of large mass-loss rates, and consistent with the colliding-wind model. Our spectra indicate that the B component in WR86 has a low mass-loss rate, which possibly explains the fact that WR86, despite being a long period WR+OB binary, was not found to be a strong non-thermal radio emitter. Because of the small mass-loss rate of the B star component in WR86, the wind collision region must be closer to the B star and smaller in effective area, hence generating smaller amounts of non-thermal radio emission. Absolute magnitudes for all the stars are estimated based on the spectral types of the components (based on the tables by Schmidt-Kaler for OB stars, and van der Hucht for WR stars), and compared with actual, observed magnitude differences. While the derived luminosities for the WC7 and B0 III stars in WR86 are consistent with the observed magnitude difference, we find a discrepancy of at least 1.5 magnitudes between the observed luminosities of the components in each of WR146 and WR147 and the absolute magnitudes expected from their spectral types. In both cases, it looks as though either the WR components are about 2 magnitudes too bright for their spectral types, or that the O components are about 2 magnitudes too faint. We discuss possible explanations for this apparent discrepancy.Comment: Accepted for publication in the Astronomical Journa

    Differential rotation of the active G5V star Kappa1 Ceti: Photometry from the MOST satellite

    Full text link
    About 30.5 days of nearly uninterrupted broadband photometry of the solar-type star Kappa1 Ceti, obtained with the MOST (Microvariability & Oscillations of STars) satellite, shows evidence for two large starspots with different rotation periods of 8.9 and approximately 9.3 days (DeltaOmega/Omega~4%). Ground based measurements in 2002 and 2003 of Ca II H & K emission reveal variations in chromospheric activity with a period of about 9.3 days. The data were obtained during the MOST commissioning phase. When the data are combined with historical observations, they indicate that the 9.3-day spot has been stable in its period for over 30 years. The photometry, with a sampling rate of approximately once per minute, was also used to search for acoustic (p-mode) oscillations in the star. We detect no clear evidence for p-modes in the Kappa1 Ceti photometry, with a noise level around 7-9 mu_mag at frequencies in the range 0.5-4 mHz (3-sigma detection limit of 21 - 27 mu_mag). There were no flares or planetary transits during the 30.5 days of MOST monitoring with light amplitudes greater than 2 mmag (durations greater than 200 minutes) and 3 mmag (2-200 min durations). While this rules out any close-in planets of >=0.5 Jupiter diameters with an orbital inclination close to 90 deg, the scatter in differential radial velocities permit a close giant planet in a more highly inclined orbit.Comment: 10 figures, accepted by PASP for Dec.200

    A 2.3-Day Periodic Variability in the Apparently Single Wolf-Rayet Star WR 134: Collapsed Companion or Rotational Modulation?

    Full text link
    We present the results of an intensive campaign of spectroscopic and photometric monitoring of the peculiar Wolf-Rayet star WR 134 from 1989 to 1997. This unprecedentedly large data set allows us to confirm unambiguously the existence of a coherent 2.25 +/- 0.05 day periodicity in the line-profile changes of He II 4686, although the global pattern of variability is different from one epoch to another. This period is only marginally detected in the photometric data set. Assuming the 2.25 day periodic variability to be induced by orbital motion of a collapsed companion, we develop a simple model aiming at investigating (i) the effect of this strongly ionizing, accreting companion on the Wolf-Rayet wind structure, and (ii) the expected emergent X-ray luminosity. We argue that the predicted and observed X-ray fluxes can only be matched if the accretion on the collapsed star is significantly inhibited. Additionally, we performed simulations of line-profile variations caused by the orbital revolution of a localized, strongly ionized wind cavity surrounding the X-ray source. A reasonable fit is achieved between the observed and modeled phase-dependent line profiles of He II 4686. However, the derived size of the photoionized zone substantially exceeds our expectations, given the observed low-level X-ray flux. Alternatively, we explore rotational modulation of a persistent, largely anisotropic outflow as the origin of the observed cyclical variability. Although qualitative, this hypothesis leads to greater consistency with the observations.Comment: 34 pages, 16 figures. Accepted by the Astrophysical Journa

    An Extreme Case of a Misaligned Highly Flattened Wind in the Wolf-Rayet Binary CX Cephei

    Full text link
    CX Cep (WR 151) is the WR+O binary (WN5+O5V) with the second shortest period known in our Galaxy. To examine the circumstellar matter distribution and to better constraint the orbital parameters and mass-loss rate of the WR star, we obtained broadband and multi-band (i.e. UBVRI) linear polarization observations of the system. Our analysis of the phase-locked polarimetric modulation confirms the high orbital inclination of the system (i.e. i=65oi=65^o). Using the orbital solution of Lewis et al. (1993) we obtain masses of 33.9M33.9 M_{\odot} and 23.9M23.9 M_{\odot} for the O and WR stars respectively, which agree with their spectral types. A simple polarimetric model accounting for finite stellar size effects allowed us to derive a mass-loss rate for the WR star of 0.30.5×105M/yr0.3-0.5\times10^{-5} M_{\odot}/yr. This result was remarkably independent of the model's input parameters and favors an earlier spectral type for the WR component (i.e. WN4). Finally, using our multi-band observations, we fitted and subtracted from our data the interstellar polarization. The resulting constant intrinsic polarization of 343-4% is misaligned in relation to the orbital plane (i.e. θCIP=26o\theta_{CIP}=26^o vs. Ω=75o\Omega=75^o) and is the highest intrinsic polarization ever observed for a WR star. This misalignment points towards a rotational (or magnetic) origin for the asymmetry and contradicts the most recent evolutionary models for massive stars (Meynet & Maeder 2003) which predict spherically symmetric winds during the WR phase (i.e. CIP=0CIP=0%).Comment: 26 pages, 4 figures. Astrophysical Journal (submited
    corecore