2 research outputs found

    Insights into the Recent Advances in Nanomaterial Based Electrochemical Sensors for Pesticides in Food

    Get PDF
    Food safety is one of the rising concerns challenging all over the world and the analysis and determination of food contaminants to ensure the quality of food is highly inevitable. Electroanalytical sensors are a versatile tool for the accurate monitoring of food samples from the pollutants. Pesticides are one of the major sources of food pollutants and their impacts on human health is also very dangerous. This will trigger the researchers to develop more and more sensitive devices to monitor the level of various pesticides in various food samples, especially in agricultural products. Electrochemical sensors fabricated using nanocomposites offers more sensitive electrochemical response in the detection of these pesticides than traditional unmodified electrodes. This prompted us to write a mini review on the electrochemical sensors for pesticides in food using nanomaterials as modifiers from some of the previous reports. This review will motivate the experts working in this area to develop highly efficient sensing devices for pesticides, beneficial to the society as well

    Insights into the Recent Advances in Nanomaterial Based Electrochemical Sensors for Pesticides in Food

    No full text
    Food safety is one of the rising concerns challenging all over the world and the analysis and determination of food contaminants to ensure the quality of food is highly inevitable. Electroanalytical sensors are a versatile tool for the accurate monitoring of food samples from the pollutants. Pesticides are one of the major sources of food pollutants and their impacts on human health is also very dangerous. This will trigger the researchers to develop more and more sensitive devices to monitor the level of various pesticides in various food samples, especially in agricultural products. Electrochemical sensors fabricated using nanocomposites offers more sensitive electrochemical response in the detection of these pesticides than traditional unmodified electrodes. This prompted us to write a mini review on the electrochemical sensors for pesticides in food using nanomaterials as modifiers from some of the previous reports. This review will motivate the experts working in this area to develop highly efficient sensing devices for pesticides, beneficial to the society as well
    corecore