5 research outputs found

    On Multi-Agent Deep Deterministic Policy Gradients and their Explainability for SMARTS Environment

    Full text link
    Multi-Agent RL or MARL is one of the complex problems in Autonomous Driving literature that hampers the release of fully-autonomous vehicles today. Several simulators have been in iteration after their inception to mitigate the problem of complex scenarios with multiple agents in Autonomous Driving. One such simulator--SMARTS, discusses the importance of cooperative multi-agent learning. For this problem, we discuss two approaches--MAPPO and MADDPG, which are based on-policy and off-policy RL approaches. We compare our results with the state-of-the-art results for this challenge and discuss the potential areas of improvement while discussing the explainability of these approaches in conjunction with waypoints in the SMARTS environment.Comment: 6 pages, 5 figure

    Estimating Time to Clear Pendency of Cases in High Courts in India using Linear Regression

    Full text link
    Indian Judiciary is suffering from burden of millions of cases that are lying pending in its courts at all the levels. The High Court National Judicial Data Grid (HC-NJDG) indexes all the cases pending in the high courts and publishes the data publicly. In this paper, we analyze the data that we have collected from the HC-NJDG portal on 229 randomly chosen days between August 31, 2017 to March 22, 2020, including these dates. Thus, the data analyzed in the paper spans a period of more than two and a half years. We show that: 1) the pending cases in most of the high courts is increasing linearly with time. 2) the case load on judges in various high courts is very unevenly distributed, making judges of some high courts hundred times more loaded than others. 3) for some high courts it may take even a hundred years to clear the pendency cases if proper measures are not taken. We also suggest some policy changes that may help clear the pendency within a fixed time of either five or fifteen years. Finally, we find that the rate of institution of cases in high courts can be easily handled by the current sanctioned strength. However, extra judges are needed only to clear earlier backlogs.Comment: 12 pages, 9 figures, JURISIN 2022. arXiv admin note: text overlap with arXiv:2307.1061

    Zero-shot Learning with Minimum Instruction to Extract Social Determinants and Family History from Clinical Notes using GPT Model

    Full text link
    Demographics, Social determinants of health, and family history documented in the unstructured text within the electronic health records are increasingly being studied to understand how this information can be utilized with the structured data to improve healthcare outcomes. After the GPT models were released, many studies have applied GPT models to extract this information from the narrative clinical notes. Different from the existing work, our research focuses on investigating the zero-shot learning on extracting this information together by providing minimum information to the GPT model. We utilize de-identified real-world clinical notes annotated for demographics, various social determinants, and family history information. Given that the GPT model might provide text different from the text in the original data, we explore two sets of evaluation metrics, including the traditional NER evaluation metrics and semantic similarity evaluation metrics, to completely understand the performance. Our results show that the GPT-3.5 method achieved an average of 0.975 F1 on demographics extraction, 0.615 F1 on social determinants extraction, and 0.722 F1 on family history extraction. We believe these results can be further improved through model fine-tuning or few-shots learning. Through the case studies, we also identified the limitations of the GPT models, which need to be addressed in future research.Comment: 5 pages, 4 figure

    Detecting pneumonia using convolutions and dynamic capsule routing for chest X-ray images

    Get PDF
    An entity\u27s existence in an image can be depicted by the activity instantiation vector from a group of neurons (called capsule). Recently, multi-layered capsules, called CapsNet, have proven to be state-of-the-art for image classification tasks. This research utilizes the prowess of this algorithm to detect pneumonia from chest X-ray (CXR) images. Here, an entity in the CXR image can help determine if the patient (whose CXR is used) is suffering from pneumonia or not. A simple model of capsules (also known as Simple CapsNet) has provided results comparable to best Deep Learning models that had been used earlier. Subsequently, a combination of convolutions and capsules is used to obtain two models that outperform all models previously proposed. These models-Integration of convolutions with capsules (ICC) and Ensemble of convolutions with capsules (ECC)-detect pneumonia with a test accuracy of 95.33% and 95.90%, respectively. The latter model is studied in detail to obtain a variant called EnCC, where n = 3, 4, 8, 16. Here, the E4CC model works optimally and gives test accuracy of 96.36%. All these models had been trained, validated, and tested on 5857 images from Mendeley
    corecore