26 research outputs found

    Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors

    Get PDF
    Tumor targeting by genetically modified mesenchymal stromal/stem cells (MSCs) carrying anti-cancer molecules represents a promising cell-based strategy. We previously showed that the pro-apoptotic agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can be successfully delivered by MSCs to cancer sites. While the interaction between TRAIL and its receptors is clear, more obscure is the way in which MSCs can selectively target tumors and their antigens. Several neuroectoderm-derived neoplasms, including glioblastoma (GBM), sarcomas, and neuroblastoma, express high levels of the tumor-associated antigen GD2. We have already challenged this cell surface disialoganglioside by a chimeric antigen receptor (CAR)-T cell approach against neuroblastoma. With the intent to maximize the therapeutic profile of MSCs delivering TRAIL, we here originally developed a bi-functional strategy where TRAIL is delivered by MSCs that are also gene modified with the truncated form of the anti-GD2 CAR (GD2 tCAR) to mediate an immunoselective recognition of GD2-positive tumors. These bi-functional MSCs expressed high levels of TRAIL and GD2 tCAR associated with a robust anti-tumor activity against GD2-positive GBM cells. Most importantly, the anti-cancer action was reinforced by the enhanced targeting potential of such bi-functional cells. Collectively, our results suggest that a truncated anti-GD2 CAR might be a powerful new tool to redirect MSCs carrying TRAIL against GD2-expressing tumors. This affinity-based dual targeting holds the promise to combine site-specific and prolonged retention of MSCs in GD2-expressing tumors, thereby providing a more effective delivery of TRAIL for still incurable cancers

    Strategies for improved targeting of therapeutic cells: implications for tissue repair

    No full text
    Multipotent mesenchymal stem cells (MSCs) have been suggested as a suitable cell source for cell-based treatments for diseases such as osteoarthritis due to their ability to differentiate towards chondrogenic and osteogenic lineages. MSCs can be obtained from a variety of tissue sources, are scalable for mass-production and immuno-privileged enabling their use for allogeneic cell therapy. However, recent pre-clinical studies and clinical trials point to the necessity of increasing engraftment and efficacy of MSCs. This review explores how cell surface modification of the cells can improve homing of MSCs and summarises the use of nanoparticles to enable gene delivery by stem cells as well as facilitate in vivo imaging. The use of advanced biomaterials and how they can be applied to reduce the overall dose of MSCs during therapeutic interventions while achieving optimal targeting efficiency of cells to the diseased sites are addressed. Particular attention is paid to methods that improve engraftment of MSCs to cartilage and research describing combinatorial approaches of particle-based cell therapies for improved regeneration of this tissue is reviewed. The use of such approaches will add to the array of potential regenerative therapeutics for treatment of osteoarthritis

    Strategies for improved targeting of therapeutic cells: Implications for tissue repair

    No full text
    Multipotent mesenchymal stem cells (MSCs) have been suggested as a suitable cell source for cell-based treatments for diseases such as osteoarthritis due to their ability to differentiate towards chondrogenic and osteogenic lineages. MSCs can be obtained from a variety of tissue sources, are scalable for mass-production and immuno-privileged enabling their use for allogeneic cell therapy. However, recent pre-clinical studies and clinical trials point to the necessity of increasing engraftment and efficacy of MSCs. This review explores how cell surface modification of the cells can improve homing of MSCs and summarises the use of nanoparticles to enable gene delivery by stem cells as well as facilitate in vivo imaging. The use of advanced biomaterials and how they can be applied to reduce the overall dose of MSCs during therapeutic interventions while achieving optimal targeting efficiency of cells to the diseased sites are addressed. Particular attention is paid to methods that improve engraftment of MSCs to cartilage and research describing combinatorial approaches of particle-based cell therapies for improved regeneration of this tissue is reviewed. The use of such approaches will add to the array of potential regenerative therapeutics for treatment of osteoarthritis

    Strategies for improved targeting of therapeutic cells: implications for tissue repair

    No full text
    Multipotent mesenchymal stem cells (MSCs) have been suggested as a suitable cell source for cell-based treatments for diseases such as osteoarthritis due to their ability to differentiate towards chondrogenic and osteogenic lineages. MSCs can be obtained from a variety of tissue sources, are scalable for mass-production and immuno-privileged enabling their use for allogeneic cell therapy. However, recent pre-clinical studies and clinical trials point to the necessity of increasing engraftment and efficacy of MSCs. This review explores how cell surface modification of the cells can improve homing of MSCs and summarises the use of nanoparticles to enable gene delivery by stem cells as well as facilitate in vivo imaging. The use of advanced biomaterials and how they can be applied to reduce the overall dose of MSCs during therapeutic interventions while achieving optimal targeting efficiency of cells to the diseased sites are addressed. Particular attention is paid to methods that improve engraftment of MSCs to cartilage and research describing combinatorial approaches of particle-based cell therapies for improved regeneration of this tissue is reviewed. The use of such approaches will add to the array of potential regenerative therapeutics for treatment of osteoarthritis
    corecore