9,541 research outputs found
The Rapid and Sensitive Quantitative Determination of Galactose by Combined Enzymatic and Colorimetric Method: Application in Neonatal Screening
The quantitative measurement of galactose in blood is essential for the early diagnosis, treatment, and dietary monitoring of galactosemia patients. In this communication, we aimed to develop a rapid, sensitive, and cost-effective combined method for galactose determination in dry blood spots. This procedure was based on the combination of enzymatic reactions of galactose dehydrogenase (GalDH), dihydrolipoyl dehydrogenase (DLD), and alkaline phosphates with a colorimetric system. The incubation time and the concentration of enzymes used in new method were also optimized. The analytical performance was studied by the precision, recovery, linearity, and sensitivity parameters. Statistical analysis was applied to method comparison experiment. The regression equation and correlation coefficient (R2) were Y = 0.0085x + 0.032 and R2 = 0.998, respectively. This assay exhibited a recovery in the range of 91.7–114.3 % and had the limit detection of 0.5 mg/dl for galactose. The between-run coefficient of variation (CV) was between 2.6 and 11.1 . The within-run CV was between 4.9 and 9.2 . Our results indicated that the new and reference methods were in agreement because no significant biases exist between them. Briefly, a quick and reliable combined enzymatic and colorimetric assay was presented for application in newborn mass screening and monitoring of galactosemia patients. © 2016 Springer Science+Business Media New Yor
A New Channel for the Detection of Planetary Systems Through Microlensing: I. Isolated Events Due to Planet Lenses
We propose and evaluate the feasibility of a new strategy to search for
planets via microlensing. This new strategy is designed to detect planets in
"wide" orbits, i.e., with orbital separation, greater than .
Planets in wide orbits may provide the dominant channel for the microlensing
discovery of planets, particularly low-mass (e.g., Earth-mass) planets. This
paper concentrates on events in which a single planet serves as a lens, leading
to an isolated event of short duration. We point out that a distribution of
events due to lensing by stars with wide-orbit planets is necessarily
accompanied by a distribution of shorter- duration events. The fraction of
events in the latter distribution is proportional to the average value of
, where is the ratio between \pl and stellar masses. The position
of the peak or peaks also provides a measure of the mass ratios typical of
planetary systems. We study detection strategies that can optimize our ability
to discover isolated short-duration events due to lensing by planets, and find
that monitoring employing sensitive photometry is particularly useful. If
planetary systems similar to our own are common, even modest changes in
detection strategy should lead to the discovery of a few isolated events of
short duration every year. We therefore also address the issue of the
contamination due to stellar populations of any microlensing signal due to
low-mass MACHOs. We describe how, even for isolated events of short duration,
it will be possible to test the hypothesis that the lens was a planet instead
of a low-mass MACHO, if the central star of the planetary system contributes a
measurable fraction of the baseline flux.Comment: 37 pages, 6 figure. To be published in the Astrophysical Journal.
This is part one of a series of papers on microlensing by planetary systems
containing wide-orbit planets; the series represents a reorganization and
extension of astro-ph/971101
- …