46 research outputs found

    Modulation of walking speed by changing optic flow in persons with stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Walking speed, which is often reduced after stroke, can be influenced by the perception of optic flow (OF) speed. The present study aims to: 1) compare the modulation of walking speed in response to OF speed changes between persons with stroke and healthy controls and 2) investigate whether virtual environments (VE) manipulating OF speed can be used to promote volitional changes in walking speed post stroke.</p> <p>Methods</p> <p>Twelve persons with stroke and 12 healthy individuals walked on a self-paced treadmill while viewing a virtual corridor in a helmet-mounted display. Two experiments were carried out on the same day. In experiment 1, the speed of an expanding OF was varied sinusoidally at 0.017 Hz (sine duration = 60 s), from 0 to 2 times the subject's comfortable walking speed, for a total duration of 5 minutes. In experiment 2, subjects were exposed to expanding OFs at discrete speeds that ranged from 0.25 to 2 times their comfortable speed. Each test trial was paired with a control trial performed at comfortable speed with matching OF. For each of the test trials, subjects were instructed to walk the distance within the same time as during the immediately preceding control trial. VEs were controlled by the CAREN-2 system (Motek). Instantaneous changes in gait speed (experiment 1) and the ratio of speed changes in the test trial over the control trial (experiment 2) were contrasted between the two groups of subjects.</p> <p>Results</p> <p>When OF speed was changing continuously (experiment 1), an out-of-phase modulation was observed in the gait speed of healthy subjects, such that slower OFs induced faster walking speeds, and vice versa. Persons with stroke displayed weaker (p < 0.05, T-test) correlation coefficients between gait speed and OF speed, due to less pronounced changes and an altered phasing of gait speed modulation. When OF speed was manipulated discretely (experiment 2), a negative linear relationship was generally observed between the test-control ratio of gait speed and OF speed in healthy and stroke individuals. The slope of this relationship was similar between the stroke and healthy groups (p > 0.05, T-test).</p> <p>Conclusion</p> <p>Stroke affects the modulation of gait speed in response to changes in the perception of movement through different OF speeds. Nevertheless, the preservation of even a modest modulation enabled the persons with stroke to increase walking speed when presented with slower OFs. Manipulation of OF speed using virtual reality technology could be implemented in a gait rehabilitation intervention to promote faster walking speeds after stroke.</p

    A Piano Training Program to Improve Manual Dexterity and Upper Extremity Function in Chronic Stroke Survivors

    Get PDF
    Objective: Music-supported therapy was shown to induce improvements in motor skills in stroke survivors. Whether all stroke individuals respond similarly to the intervention and whether gains can be maintained over time remain unknown. We estimated the immediate and retention effects of a piano training program on upper extremity function in persons with chronic stroke. Methods: Thirteen stroke participants engaged in a 3-week piano training comprising supervised sessions (9 × 60 min) and home practice. Fine and gross manual dexterity, movement coordination, and functional use of the upper extremity were assessed at baseline, pre-intervention, post-intervention, and at a 3-week follow-up. Results: Significant improvements were observed for all outcomes at post-intervention and follow-up compared to pre-intervention scores. Larger magnitudes of change in manual dexterity and functional use of the upper extremity were associated with higher initial levels of motor recovery. Conclusion: Piano training can result in sustainable improvements in upper extremity function in chronic stroke survivors. Individuals with a higher initial level of motor recovery at baseline appear to benefit the most from this intervention

    Creating a rehabilitation living lab to optimize participation and inclusion for persons with physical disabilities

    Get PDF
    AbstractWe present an on-going multidisciplinary and multisectorial strategic development project put forth by the Centre for Interdisciplinary Research in Rehabilitation of greater Montréal (CRIR) in Quebec, Canada and its members, in collaboration with a Montréal “renovation-ready” shopping mall, local community organizations, and local, national and international research and industrial partners. Beginning in 2011, within the context of the Mall as Living Lab (MALL), more than 45 projects were initiated to: (1) identify the environmental, physical and social obstacles and facilitators to participation; (2) develop technology and interventions to optimize physical and cognitive function participation and inclusion; (3) implement and evaluate the impact of technology and interventions in vivo. Two years later and working within a participatory action research (PAR) approach, and the overarching WHO framework of the International Classification of Functioning, Disability and Health (ICF), we discuss challenges and future endeavors. Challenges include creating and maintaining partnerships, ensuring a PAR approach to engage multiple stakeholders (e.g. people with disabilities, rehabilitation and design researchers, health professionals, community members and shopping mall stakeholders) and assessing the overall impact of the living lab. Future endeavors, including the linking between research results and recommendations for renovations to the mall, are also presented

    Locomotor circumvention strategies are altered by stroke: I. Obstacle clearance

    No full text
    Abstract Background Functional locomotion requires the ability to adapt to environmental challenges such as the presence of stationary or moving obstacles. Difficulties in obstacle circumvention often lead to restricted community ambulation in individuals with stroke. The objective of this study was to contrast obstacle circumvention strategies between post-stroke (n = 12) and healthy individuals (n = 12) performing locomotor and perceptuomotor (joystick navigation) tasks with different obstacle approaches. Methods Participants walked and navigated with a joystick towards a central target, in a virtual environment simulating a large room, while avoiding an obstacle that either remained stationary at the pre-determined point of intersection or moved from head-on or diagonally 30° left/right. The outcome measures included dynamic clearance (DC), instantaneous distance from obstacle at crossing (IDC), number of collisions and preferred side of circumvention. These measures were compared between groups (stroke vs. healthy), obstacle parameter (stationary vs. moving head-on) and direction of approach (left/paretic vs. right/non-paretic). Results DC was significantly larger when circumventing a moving obstacle that approached head-on as compared to a stationary obstacle for both groups during both tasks, while not significantly different in either diagonal approach in either group. IDC was smaller in the stroke group while walking and larger in both groups during joystick navigation when avoiding moving as compared to stationary obstacle. IDC was significantly larger in the stroke group compared to controls for diagonal approaches during walking, wherein two different strategies emerged amongst individuals with stroke: circumventing to the same (Vsame n = 6) or opposite (Vopp n = 4) side of obstacle approach. This behavior was not seen in the perceptuomotor task, wherein post-stroke participants circumvented to opposite side of the obstacle approach as seen in healthy participants. In the locomotor task, the Vsame subgroup that had greater functional limitations used larger DC as compared to the Vopp subgroup and healthy individuals. The remaining two individuals with stroke collided with obstacles in >50% trials of either obstacle approach. The underlying mechanisms for collision were however different for both individuals. Conclusion Avoidance strategies in individuals with stroke can vary depending on the individual locomotor capabilities and obstacle characteristics

    Locomotor circumvention strategies are altered by stroke: II. Postural Coordination

    No full text
    Abstract Background Locomotor strategies for obstacle circumvention require appropriate postural coordination that depends on sensorimotor integration within the central nervous system. It is not known how these strategies are affected by a stroke. The objective of this study was to contrast postural coordination strategies used for obstacle circumvention between post-stroke participants (n = 12) and healthy controls (n = 12). Methods Participants walked towards a target in a virtual environment (11 × 8 m room) with cylindrical obstacles that were stationary or approaching from head-on, or diagonally 30° left/right. Results Two stepping strategies for obstacle circumvention were identified: 1) side step: increase in step width by the foot ipsilateral to the side of circumvention; 2) cross step: decrease in step width by the foot contralateral to the side of circumvention. The side step strategy was favoured by post-stroke individuals in circumventing stationary and head-on approaching obstacles. In circumventing diagonally approaching obstacles, healthy controls generally veered opposite to obstacle approach (>60% trials), whereas the majority of post-stroke participants (7/12) veered to the same side of obstacle approach (Vsame). Post-stroke participants who veered to the opposite side (Vopp, 5/12) were more independent and faster ambulators who favoured the side step strategy in circumventing obstacles approaching from the paretic side and cross step strategy for obstacles approaching from the non-paretic side. Vsame participants generally favoured the side step strategy for both diagonal approaches. Segmental rotation amplitudes and latencies were largest in the Vsame group, and significantly greater in post-stroke participants than controls for all obstacle conditions. All participants initiated circumvention with the feet followed by the pelvis and thorax, demonstrating a caudal-rostral sequence of reorientation. Conclusion Postural coordination strategies for obstacle circumvention were altered post stroke, depending on the residual or restored functional abilities. Segmental re-orientations are also affected by the motion and direction of obstacle

    The effects of error-augmentation versus error-reduction paradigms in robotic therapy to enhance upper extremity performance and recovery post-stroke: a systematic review

    No full text
    Abstract Despite upper extremity function playing a crucial role in maintaining one’s independence in activities of daily living, upper extremity impairments remain one of the most prevalent post-stroke deficits. To enhance the upper extremity motor recovery and performance among stroke survivors, two training paradigms in the fields of robotics therapy involving modifying haptic feedback were proposed: the error-augmentation (EA) and error-reduction (ER) paradigms. There is a lack of consensus, however, as to which of the two paradigms yields superior training effects. This systematic review aimed to determine (i) whether EA is more effective than conventional repetitive practice; (ii) whether ER is more effective than conventional repetitive practice and; (iii) whether EA is more effective than ER in improving post-stroke upper extremity motor recovery and performance. The study search and selection process as well as the ratings of methodological quality of the articles were conducted by two authors separately, and the results were then compared and discussed among the two reviewers. Findings were analyzed and synthesized using the level of evidence. By August 1st 2017, 269 articles were found after searching 6 databases, and 13 were selected based on criteria such as sample size, type of participants recruited, type of interventions used, etc. Results suggest, with a moderate level of evidence, that EA is overall more effective than conventional repetitive practice (motor recovery and performance) and ER (motor performance only), while ER appears to be no more effective than conventional repetitive practice. However, intervention effects as measured using clinical outcomes were under most instance not ‘clinically meaningful’ and effect sizes were modest. While stronger evidence is required to further support the efficacy of error modification therapies, the influence of factors related to the delivery of the intervention (such as intensity, duration) and personal factors (such as stroke severity and time of stroke onset) deserves further investigations as well
    corecore