1,221 research outputs found

    Novel cellular mechanisms for neuroprotection in ischemic preconditioning: A view from inside organelles

    Get PDF
    Ischemic preconditioning represents an important adaptation mechanism of CNS, which results in its increased tolerance to the lethal cerebral ischemia. The molecular mechanisms responsible for the induction and maintenance of ischemic tolerance in the brain are complex and not yet completely clarified. In the last 10 years, great attention has been devoted to unravel the intracellular pathways activated by preconditioning and responsible for the establishing of the tolerant phenotype. Indeed, recent papers have been published supporting the hypothesis that mitochondria might act as master regulators of preconditioning-triggered endogenous neuroprotection due to their ability to control cytosolic calcium homeostasis. More interestingly, the demonstration that functional alterations in the ability of mitochondria and endoplasmic reticulum (ER) managing calcium homeostasis during ischemia, opened a new line of research focused to the role played by mitochondria and ER cross-talk in the pathogenesis of cerebral ischemia in order to identify new molecular mechanisms involved in the ischemic tolerance. In line with these findings and considering that the expression of the three isoforms of the sodium calcium exchanger (NCX), NCX1, NCX2, and NCX3, mainly responsible for the regulation of Ca2+ homeostasis, was reduced during cerebral ischemia, it was investigated whether these proteins might play a role in neuroprotection induced by ischemic tolerance. In this review, evidence supporting the involvement of ER and mitochondria interaction within the preconditioning paradigm will be provided. In particular, the key role played by NCXs in the regulation of Ca2+-homeostasis at the different subcellular compartments will be discussed as new molecular mechanism proposed for the establishing of ischemic tolerant phenotype

    Taking action to lose weight: Toward an understanding of individual differences

    Get PDF
    The problem of obesity has reached epidemic proportions. Currently, roughly two-thirds of all adult Americans are overweight or obese. Of these, 40% are not engaging in weight control. Little is known about these individuals except that they are at high-risk for a variety of medical comorbidities. A greater understanding of these persons is imperative for ultimately encouraging their initiation of weight control practices. Among those who are addressing their obesity, the prominent strategy employed is dieting on one’s own. Previous research has studied overweight people who seek help with weight control versus those who do not. Help-seeking has been associated with higher levels of psychological distress and more severe obesity. This classification however neglects individuals attempting other weight control methods besides seeking outside assistance. The present study proposes a two-dimensional system for understanding varying levels of weight control behavior. A help-seeking dimension is proposed that capres a gradation of help-seeking behaviors. The second dimension aims at classifying individuals on a self-agency dimension. This dimension explores how individuals’ perception of themselves as agents of change influences their weight control. Socioeconomic status (SES) is hypothesized as a potential moderator of both dimensions. The present study aims to demonstrate possible correlates of both dimensions, including psychological distress, disordered eating behavior, obesity-related knowledge, body-image, and comorbid medical risks. By uncovering differences in these variables across the two dimensions, our understanding of what factors contribute to engagement in varying levels of weight control behaviors will be augmented.Ph.D., Clinical Psychology -- Drexel University, 200

    Taking action to lose weight: Toward an understanding of individual differences

    Get PDF
    The problem of obesity has reached epidemic proportions. Currently, roughly two-thirds of all adult Americans are overweight or obese. Of these, 40% are not engaging in weight control. Little is known about these individuals except that they are at high-risk for a variety of medical comorbidities. A greater understanding of these persons is imperative for ultimately encouraging their initiation of weight control practices. Among those who are addressing their obesity, the prominent strategy employed is dieting on one’s own. Previous research has studied overweight people who seek help with weight control versus those who do not. Help-seeking has been associated with higher levels of psychological distress and more severe obesity. This classification however neglects individuals attempting other weight control methods besides seeking outside assistance. The present study proposes a two-dimensional system for understanding varying levels of weight control behavior. A help-seeking dimension is proposed that capres a gradation of help-seeking behaviors. The second dimension aims at classifying individuals on a self-agency dimension. This dimension explores how individuals’ perception of themselves as agents of change influences their weight control. Socioeconomic status (SES) is hypothesized as a potential moderator of both dimensions. The present study aims to demonstrate possible correlates of both dimensions, including psychological distress, disordered eating behavior, obesity-related knowledge, body-image, and comorbid medical risks. By uncovering differences in these variables across the two dimensions, our understanding of what factors contribute to engagement in varying levels of weight control behaviors will be augmented.Ph.D., Clinical Psychology -- Drexel University, 200

    Effect of Surfactant Mixtures on Skin Structure and Barrier Properties

    Get PDF
    We investigated the effect of two commonly studied surfactants, sodium dodecyl sulfate (SDS) and dodecyl trimethylammonium bromide (C12TAB), on skin barrier properties. Using skin conductivity, FT-IR of stratum corneum samples, and penetration of radiolabelled SDS, we determined that addition of C12TAB lowers the ability of SDS to perturb skin’s barrier properties. Ultrafiltration experiments revealed that addition of C12TAB serves to decrease the concentration of monomers and sub-micellar aggregates. None of the measured skin properties including enhancement of skin conductivity, perturbation of lipid structure and skin concentration of SDS correlated with the total SDS concentration in the donor compartment (i.e., the total SDS concentration). However, all these parameters correlated well against the concentration of monomers and sub-micellar aggregates. These findings provide the evidence of the importance of monomer and sub-micellar components in altering skin barrier properties

    Involvement of phosphodiesterase-cGMP-PKG pathway in intracellular Ca2+ oscillations in pituitary GH3 cells

    Get PDF
    AbstractThe present study investigates the potential role of the Ca2+-calmodulin-dependent type I phosphodiesterase (PDE)-cGMP-protein kinase G (PKG) pathway in spontaneous [Ca2+]i oscillations in GH3 cells using fura-2 single cell videoimaging. Vinpocetine (2.5–50 ÎŒM), a selective inhibitor of type I PDE, induced a concentration-dependent inhibition of spontaneous [Ca2+]i oscillations in these pituitary cells, and at the same time produced an increase of the intracellular cGMP content. The cell permeable cGMP analog N2,2â€Č-O-dibutyryl-cGMP (dB-cGMP) (1 mM) caused a progressive reduction of the frequency and the amplitude of spontaneous [Ca2+]i oscillations when added to the medium. KT5823 (400 nM), a selective inhibitor of cGMP-dependent protein kinase (PKG), produced an increase of baseline [Ca2+]i and the disappearance of spontaneous [Ca2+]i oscillations. When KT5823 was added before vinpocetine, the PKG inhibitor counteracted the [Ca2+]i lowering effect of the cGMP catabolism inhibitor. Finally, the removal of extracellular Ca2+ or the blockade of L-type voltage-sensitive calcium channels (VSCC) by nimodipine produced a decrease of cytosolic cGMP levels. Collectively, the results of the present study suggest that spontaneous [Ca2+]i oscillations in GH3 cells may be regulated by the activity of type I PDE-cGMP-PKG pathway

    Na+/Ca2+ exchanger isoform 1 takes part to the Ca2+-related prosurvival pathway of SOD1 in primary motor neurons exposed to beta-methylamino-l-alanine

    Get PDF
    Background: The cycad neurotoxin beta-methylamino-l-alanine (L-BMAA), one of the environmental trigger factor for amyotrophic lateral sclerosis/Parkinson-dementia complex (ALS/PDC), may cause neurodegeneration by disrupting organellar Ca2+ homeostasis. Through the activation of Akt/ERK1/2 pathway, the Cu,Zn-superoxide dismutase (SOD1) and its non-metallated form, ApoSOD1, prevent endoplasmic reticulum (ER) stress-induced cell death in motor neurons exposed to L-BMAA. This occurs through the rapid increase of intracellular Ca2+ concentration ([Ca2+]i) in part flowing from the extracellular compartment and in part released from ER. However, the molecular components of this mechanism remain uncharacterized. Methods: By an integrated approach consisting on the use of siRNA strategy, Western blotting, confocal double- labeling immunofluorescence, patch-clamp electrophysiology, and Fura 2-/SBFI-single-cell imaging, we explored in rat motor neuron-enriched cultures the involvement of the plasma membrane proteins Na+/Ca2+ exchanger (NCX) and purinergic P2X7 receptor as well as that of the intracellular cADP-ribose (cADPR) pathway, in the neuroprotective mechanism of SOD1. Results: We showed that SOD1-induced [Ca2+]i rise was prevented neither by A430879, a P2X7 receptor specific antagonist or 8-bromo-cADPR, a cell permeant antagonist of cADP-ribose, but only by the pan inhibitor of NCX, CB-DMB. The same occurred for the ApoSOD1. Confocal double labeling immunofluorescence showed a huge expression of plasmalemmal NCX1 and intracellular NCX3 isoforms. Furthermore, we identified NCX1 reverse mode as the main mechanism responsible for the neuroprotective ER Ca2+ refilling elicited by SOD1 and ApoSOD1 through which they promoted translocation of active Akt in the nuclei of a subset of primary motor neurons. Finally, the activation of NCX1 by the specific agonist CN-PYB2 protected motor neurons from L-BMAA-induced cell death, mimicking the effect of SOD1. Conclusion: Collectively, our data indicate that SOD1 and ApoSOD1 exert their neuroprotective effect by modulating ER Ca2+ content through the activation of NCX1 reverse mode and Akt nuclear translocation in a subset of primary motor neurons. [MediaObject not available: see fulltext.

    Ncx3-induced mitochondrial dysfunction in midbrain leads to neuroinflammation in striatum of A53t-α-synuclein transgenic old mice

    Get PDF
    The exact mechanism underlying selective dopaminergic neurodegeneration is not completely understood. The complex interplay among toxic alpha-synuclein aggregates, oxidative stress, altered intracellular Ca2+-homeostasis, mitochondrial dysfunction and disruption of mitochondrial integrity is considered among the pathogenic mechanisms leading to dopaminergic neuronal loss. We herein investigated the molecular mechanisms leading to mitochondrial dysfunction and its relationship with activation of the neuroinflammatory process occurring in Parkinson’s disease. To address these issues, experiments were performed in vitro and in vivo in mice carrying the human mutation of α-synuclein A53T under the prion murine promoter. In these models, the expression and activity of NCX isoforms, a family of important transporters regulating ionic homeostasis in mammalian cells working in a bidirectional way, were evaluated in neurons and glial cells. Mitochondrial function was monitored with confocal microscopy and fluorescent dyes to measure mitochondrial calcium content and mitochondrial membrane potential. Parallel experiments were performed in 4 and 16-month-old A53T-α-synuclein Tg mice to correlate the functional data obtained in vitro with mitochondrial dysfunction and neuroinflammation through biochemical analysis. The results obtained demonstrated: 1. in A53T mice mitochondrial dysfunction occurs early in midbrain and later in striatum; 2. mitochondrial dysfunction occurring in the midbrain is mediated by the impairment of NCX3 protein expression in neurons and astrocytes; 3. mitochondrial dysfunction occurring early in midbrain triggers neuroinflammation later into the striatum, thus contributing to PD progression during mice aging

    The Na+/Ca2+ Exchanger 3 Is Functionally Coupled With the NaV1.6 Voltage-Gated Channel and Promotes an Endoplasmic Reticulum Ca2+ Refilling in a Transgenic Model of Alzheimer’s Disease

    Get PDF
    The remodelling of neuronal ionic homeostasis by altered channels and transporters is a critical feature of the Alzheimer’s disease (AD) pathogenesis. Different reports converge on the concept that the Na+/Ca2+ exchanger (NCX), as one of the main regulators of Na+ and Ca2+ concentrations and signalling, could exert a neuroprotective role in AD. The activity of NCX has been found to be increased in AD brains, where it seemed to correlate with an increased neuronal survival. Moreover, the enhancement of the NCX3 currents (INCX) in primary neurons treated with the neurotoxic amyloid ÎČ 1–42 (AÎČ1–42) oligomers prevented the endoplasmic reticulum (ER) stress and neuronal death. The present study has been designed to investigate any possible modulation of the INCX, the functional interaction between NCX and the NaV1.6 channel, and their impact on the Ca2+ homeostasis in a transgenic in vitro model of AD, the primary hippocampal neurons from the Tg2576 mouse, which overproduce the AÎČ1–42 peptide. Electrophysiological studies, carried in the presence of siRNA and the isoform-selective NCX inhibitor KB-R7943, showed that the activity of a specific NCX isoform, NCX3, was upregulated in its reverse, Ca2+ influx mode of operation in the Tg2576 neurons. The enhanced NCX activity contributed, in turn, to increase the ER Ca2+ content, without affecting the cytosolic Ca2+ concentrations of the Tg2576 neurons. Interestingly, our experiments have also uncovered a functional coupling between NCX3 and the voltage-gated NaV1.6 channels. In particular, the increased NaV1.6 currents appeared to be responsible for the upregulation of the reverse mode of NCX3, since both TTX and the Streptomyces griseolus antibiotic anisomycin, by reducing the NaV1.6 currents, counteracted the increase of the INCX in the Tg2576 neurons. In agreement, our immunofluorescence analyses revealed that the NCX3/NaV1.6 co-expression was increased in the Tg2576 hippocampal neurons in comparison with the WT neurons. Collectively, these findings indicate that NCX3 might intervene in the Ca2+ remodelling occurring in the Tg2576 primary neurons thus emerging as a molecular target with a neuroprotective potential, and provide a new outcome of the NaV1.6 upregulation related to the modulation of the intracellular Ca2+ concentrations in AD neurons
    • 

    corecore