4 research outputs found
Recommended from our members
Differential Effects of Sorafenib on Liver Versus Tumor Fibrosis Mediated by Stromal-Derived Factor 1 alpha/C-X-C Receptor Type 4 Axis and Myeloid Differentiation Antigen-Positive Myeloid Cell Infiltration in Mice
Sorafenib—a broad kinase inhibitor—is a standard therapy for advanced hepatocellular carcinoma (HCC) and has been shown to exert antifibrotic effects in liver cirrhosis, a precursor of HCC. However, the effects of sorafenib on tumor desmoplasia—and its consequences on treatment resistance—remain unknown. We demonstrate that sorafenib has differential effects on tumor fibrosis versus liver fibrosis in orthotopic models of HCC in mice. Sorafenib intensifies tumor hypoxia, which increases stromal-derived factor 1 alpha (SDF-1α) expression in cancer and stromal cells and, subsequently, myeloid differentiation antigen–positive (Gr-1+) myeloid cell infiltration. The SDF-1α/C-X-C receptor type 4 (CXCR4) pathway directly promotes hepatic stellate cell (HSC) differentiation and activation through the mitogen-activated protein kinase pathway. This is consistent with the association between SDF-1α expression with fibrotic septa in cirrhotic liver tissues as well as with desmoplastic regions of human HCC samples. We demonstrate that after treatment with sorafenib, SDF-1α increased the survival of HSCs and their alpha-smooth muscle actin and collagen I expression, thus increasing tumor fibrosis. Finally, we show that Gr-1+ myeloid cells mediate HSC differentiation and activation in a paracrine manner. CXCR4 inhibition, using AMD3100 in combination with sorafenib treatment, prevents the increase in tumor fibrosis—despite persistently elevated hypoxia—in part by reducing Gr-1+ myeloid cell infiltration and inhibits HCC growth. Similarly, antibody blockade of Gr-1 reduces tumor fibrosis and inhibits HCC growth when combined with sorafenib treatment. Conclusion: Blocking SDF-1α/CXCR4 or Gr-1+ myeloid cell infiltration may reduce hypoxia-mediated HCC desmoplasia and increase the efficacy of sorafenib treatment. (Hepatology 2014;59:1435-1447
Recommended from our members
Overcoming sorafenib evasion in hepatocellular carcinoma using CXCR4-targeted nanoparticles to co-deliver MEK-inhibitors
Sorafenib is a RAF inhibitor approved for several cancers, including hepatocellular carcinoma (HCC). Inhibition of RAF kinases can induce a dose-dependent “paradoxical” upregulation of the downstream mitogen-activated protein kinase (MAPK) pathway in cancer cells. It is unknown whether “paradoxical” ERK activation occurs after sorafenib therapy in HCC, and if so, if it impacts the therapeutic efficacy. Here, we demonstrate that RAF inhibition by sorafenib rapidly leads to RAF dimerization and ERK activation in HCCs, which contributes to treatment evasion. The transactivation of RAF dimers and ERK signaling promotes HCC cell survival, prevents apoptosis via downregulation of BIM and achieves immunosuppression by MAPK/NF-kB-dependent activation of PD-L1 gene expression. To overcome treatment evasion and reduce systemic effects, we developed CXCR4-targeted nanoparticles to co-deliver sorafenib with the MEK inhibitor AZD6244 in HCC. Using this approach, we preferentially and efficiently inactivated RAF/ERK, upregulated BIM and down-regulated PD-L1 expression in HCC, and facilitated intra-tumoral infiltration of cytotoxic CD8+ T cells. These effects resulted in a profound delay in tumor growth. Thus, this nano-delivery strategy to selectively target tumors and prevent the paradoxical ERK activation could increase the feasibility of dual RAF/MEK inhibition to overcome sorafenib treatment escape in HCC