2 research outputs found

    The Head-On Collision of Two Equal Mass Black Holes Peter Anninos

    Full text link
    We study the head-on collision of two equal mass, nonrotating black holes. Various initial configurations are investigated, including holes which are initially surrounded by a common apparent horizon to holes that are separated by about 20M20M, where MM is the mass of a single black hole. We have extracted both â„“=2\ell = 2 and â„“=4\ell=4 gravitational waveforms resulting from the collision. The normal modes of the final black hole dominate the spectrum in all cases studied. The total energy radiated is computed using several independent methods, and is typically less than 0.002M0.002 M. We also discuss an analytic approach to estimate the total gravitational radiation emitted in the collision by generalizing point particle dynamics to account for the finite size and internal dynamics of the two black holes. The effects of the tidal deformations of the horizons are analysed using the membrane paradigm of black holes. We find excellent agreement between the numerical results and the analytic estimates.Comment: 33 pages, NCSA 94-048, WUGRAV-94-

    Notes on the integration of numerical relativity waveforms

    Full text link
    A primary goal of numerical relativity is to provide estimates of the wave strain, hh, from strong gravitational wave sources, to be used in detector templates. The simulations, however, typically measure waves in terms of the Weyl curvature component, ψ4\psi_4. Assuming Bondi gauge, transforming to the strain hh reduces to integration of ψ4\psi_4 twice in time. Integrations performed in either the time or frequency domain, however, lead to secular non-linear drifts in the resulting strain hh. These non-linear drifts are not explained by the two unknown integration constants which can at most result in linear drifts. We identify a number of fundamental difficulties which can arise from integrating finite length, discretely sampled and noisy data streams. These issues are an artifact of post-processing data. They are independent of the characteristics of the original simulation, such as gauge or numerical method used. We suggest, however, a simple procedure for integrating numerical waveforms in the frequency domain, which is effective at strongly reducing spurious secular non-linear drifts in the resulting strain.Comment: 23 pages, 10 figures, matches final published versio
    corecore