4 research outputs found
The pleiotropic mutation dar1 affects plant architecture in Arabidopsis thaliana
AbstractShoot architecture is shaped upon the organogenic activity of the shoot apical meristem (SAM). Such an activity relies on the balance between the maintenance of a population of undifferentiated cells in the centre of the SAM and the recruitment of organ founder cells at the periphery. A novel mutation in Arabidopsis thaliana, distorted architecture1 (dar1), is characterised by disturbed phyllotaxy of the inflorescence and consumption of the apical meristem late in development. SEM and light microscopy analyses of the dar1 SAM reveal an abnormal partitioning of meristematic domains, and mutations known to affect the SAM structure and function were found to interact with dar1. Moreover, the mutant shows an alteration of the root apical meristem (RAM) structure. Those observations support the hypothesis that DAR1 has a role in meristem maintenance and it is required for the normal development of Arabidopsis inflorescence during plant life
Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor
Somatic embryogenesis is used for vegetative propagation of conifers. Embryogenic cultures can be established from zygotic embryos; however, the embryogenic potential decreases during germination. In Arabidopsis, LEAFY COTYLEDON (LEC) genes are expressed during the embryonic stage, and must be repressed to allow germination. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) causes de-repression of LEC genes. ABSCISICACID3 (ABI3) and its Zeamays ortholog VIVIPAROUS1 (VP1) act together with the LEC genes to promote embryo maturation. In this study, we have asked the question whether TSA treatment in a conifer affects the embryogenic potential and the expression of embryogenesis-related genes. We isolated two conifer LEC1-type HAP3 genes, HAP3A and HAP3B, from Picea abies and Pinus sylvestris. A comparative phylogenetic analysis of plant HAP3 genes suggests that HAP3A and HAP3B are paralogous genes originating from a duplication event in the conifer lineage. The expression of HAP3A is high, in both somatic and zygotic embryos, during early embryo development, but decreases during late embryogeny. In contrast, the expression of VP1 is initially low but increases during late embryogeny. After exposure to TSA, germinating somatic embryos of P. abies maintain the competence to differentiate embryogenic tissue, and simultaneously the germination progression is partially inhibited. Furthermore, when embryogenic cultures of P. abies are exposed to TSA during embryo maturation, the maturation process is arrested and the expression levels of PaHAP3A and PaVP1 are maintained, suggesting a possible link between chromatin structure and expression of embryogenesis-related genes in conifers