2 research outputs found

    Magnetic Interactions in a Series of Homodinuclear Lanthanide Complexes

    Full text link
    A series of seven isostructural homodinuclear lanthanide complexes are reported. The magnetic properties (ac and dc SQUID measurements) are discussed on the basis of the X-ray structural properties which show that the two lanthanide sites are structurally different. MCD spectroscopy of the dysprosium­(III) and neodymium­(III) complexes ([Dy<sup>III</sup><sub>2</sub>(L)­(OAc)<sub>4</sub>]<sup>+</sup> and [Nd<sup>III</sup><sub>2</sub>(L)­(OAc)<sub>4</sub>]<sup>+</sup>) allowed us to thoroughly analyze the ligand field, and high-frequency EPR spectroscopy of the gadolinium­(III) species ([Gd<sup>III</sup><sub>2</sub>(L)­(OAc)<sub>4</sub>]<sup>+</sup>) showed the importance of dipolar coupling in these systems. An extensive quantum-chemical analysis of the dysprosium­(III) complex ([Dy<sup>III</sup><sub>2</sub>(L)­(OAc)<sub>4</sub>]<sup>+</sup>), involving an ab initio (CASSCF) wave function, explicit spin–orbit coupling (RASSI-SO), and a ligand field analysis (Lines model and Stevens operators), is in full agreement with all experimental data (SQUID, HF-EPR, MCD) and specifically allowed us to accurately simulate the experimental χ<i>T</i> versus <i>T</i> data, which therefore allowed us to establish a qualitative model for all relaxation pathways

    Synthesis and Characterization of Multinuclear Manganese-Containing Tungstosilicates

    Full text link
    The five manganese-containing, Keggin-based tungstosilicates [Mn<sup>II</sup><sub>3</sub>(OH)<sub>3</sub>­(H<sub>2</sub>O)<sub>3</sub>(<i>A</i>-α-SiW<sub>9</sub>O<sub>34</sub>)]<sup>7–</sup> (<b>1</b>), [Mn<sup>III</sup><sub>3</sub>(OH)<sub>3</sub>­(H<sub>2</sub>O)<sub>3</sub>(<i>A</i>-α-SiW<sub>9</sub>O<sub>34</sub>)]<sup>4–</sup> (<b>2</b>), [Mn<sup>III</sup><sub>3</sub>(OH)<sub>3</sub>­(H<sub>2</sub>O)<sub>3</sub>(<i>A</i>-β-SiW<sub>9</sub>O<sub>34</sub>)]<sup>4–</sup> (<b>3</b>), [Mn<sup>III</sup><sub>3</sub>Mn<sup>IV</sup>O<sub>3</sub>­(CH<sub>3</sub>COO)<sub>3</sub>(<i>A</i>-α-SiW<sub>9</sub>O<sub>34</sub>)]<sup>6–</sup> (<b>4</b>), and [Mn<sup>III</sup><sub>3</sub>Mn<sup>IV</sup>O<sub>3</sub>­(CH<sub>3</sub>COO)<sub>3</sub>(<i>A</i>-β-SiW<sub>9</sub>O<sub>34</sub>)]<sup>6–</sup> (<b>5</b>) were synthesized in aqueous medium by interaction of [<i>A</i>-α-SiW<sub>9</sub>O<sub>34</sub>]<sup>10–</sup> or [<i>A</i>-β-SiW<sub>9</sub>O<sub>34</sub>H]<sup>9–</sup> with either MnCl<sub>2</sub> (<b>1</b>) or [Mn<sup>III</sup><sub>8</sub>Mn<sup>IV</sup><sub>4</sub>O<sub>12</sub>(CH<sub>3</sub>COO)<sub>16</sub>(H<sub>2</sub>O)<sub>4</sub>] (<b>2</b>–<b>5</b>) under carefully adjusted reaction conditions. The obtained salts of these polyanions were analyzed in the solid state by single-crystal X-ray diffraction, IR spectroscopy, and thermogravimetric analysis. The salts of polyanions <b>1</b>, <b>2</b>, and <b>4</b> were further characterized in the solid state by magnetic studies, as well as in solution by electrochemistry
    corecore