21 research outputs found

    Extreme hyperleukocytosis in a pediatric T-ALL patient with a rare translocation, t(7;19)(q35;p13), and submicroscopic deletions at 4q25, 7q33 and 10q23

    No full text
    Although childhood T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk disease the outcome can vary considerably. The varying outcomes suggest that unrecognized factors may contribute to disease progression. We report on a 2-year-old T-ALL patient presenting with a very short history of constipation and extreme hyperleukocytosis (WBC 882×109/L). In her leukemic cells we detected the very rare translocation t(7;19)(q35;p13) and LYL1 overexpression. Additionally, we detected submicroscopic deletions at 4q25, 7q33 and 10q23 by oligo-aCGH analysis. We suggest that LYL1 overexpression contributed to the leukemic state and propose that the observed microdeletions may have influenced to the rapid disease progression

    Systematic evaluation of signal-to-noise ratio in variant detection from single cell genome multiple displacement amplification and exome sequencing

    No full text
    Abstract Background The current literature on single cell genomic analyses on the DNA level is conflicting regarding requirements for cell quality, amplification success rates, allelic dropouts and resolution, lacking a systematic comparison of multiple cell input down to the single cell. We hypothesized that such a correlation assay would provide an approach to address the latter issues, utilizing the leukemic cell line OCI-AML3 with a known set of genetic aberrations. Results By analyzing single and multiple cell replicates (2 to 50 cells) purified by micromanipulation and serial dilution we stringently assessed the signal-to-noise ratio (SNR) from single as well as a discrete number of cells based on a multiple displacement amplification method, with whole exome sequencing as signal readout. In this setting, known OCI-AML3 mutations as well as large copy number alterations could be identified, adding to the current knowledge of cytogenetic status. The presence of DNMT3A R882C, NPM1 W288 fs and NRAS Q61L was consistent, in spite of uneven allelic read depths. In contrast, at the level of single cells, we observed that one-third to half of all variants were not reproduced in the replicate sample, and this allelic mismatch displayed an exponential function of cell input. Large signature duplications were discernible from 5 cells, whereas deletions were visible down to the single cell. Thus, even under highly optimized conditions, single cell whole genome amplification and interpretation must be taken with considerable caution, given that allelic change is frequent and displays low SNR. Allelic noise is rapidly alleviated with increased cell input, and the SNR is doubled from 2 to 50 cells. Conclusions In conclusion, we demonstrate noisy allele distributions, when analyzing genetic aberrations within single cells relative to multiple cells. Based on the presented data we recommend that single cell analyses should include replicate cell dilution assays for a given setup for relative assessment of procedure-specific SNR to ensure that the resolution supports the specific hypotheses
    corecore