19 research outputs found
Cotransporter-mediated water transport underlying cerebrospinal fluid formation
AbstractCerebrospinal fluid (CSF) production occurs at a rate of 500 ml per day in the adult human. Conventional osmotic forces do not suffice to support such production rate and the molecular mechanisms underlying this fluid production remain elusive. Using ex vivo choroid plexus live imaging and isotope flux in combination with in vivo CSF production determination in mice, we identify a key component in the CSF production machinery. The Na+/K+/2Cl− cotransporter (NKCC1) expressed in the luminal membrane of choroid plexus contributes approximately half of the CSF production, via its unusual outward transport direction and its unique ability to directly couple water transport to ion translocation. We thereby establish the concept of cotransport of water as a missing link in the search for molecular pathways sustaining CSF production and redefine the current model of this pivotal physiological process. Our results provide a rational pharmacological target for pathologies involving disturbed brain fluid dynamics.</jats:p
The Diagnostic Potential of Fe Lines Applied to Protostellar Jets
We investigate the diagnostic capabilities of iron lines for tracing the physical conditions of shock-excited gas in jets driven by pre-main sequence stars. We have analyzed the 3000-25000 \uc5, X-shooter spectra of two jets driven by the pre-main sequence stars ESO-H\u3b1 574 and Par-Lup 3-4. Both spectra are very rich in [Fe II] lines over the whole spectral range; in addition, lines from [Fe III] are detected in the ESO-H\u3b1 574 spectrum. Non-local thermal equilibrium codes solving the equations of the statistical equilibrium along with codes for the ionization equilibrium are used to derive the gas excitation conditions of electron temperature and density and fractional ionization. An estimate of the iron gas-phase abundance is provided by comparing the iron lines emissivity with that of neutral oxygen at 6300 \uc5. The [Fe II] line analysis indicates that the jet driven by ESO-H\u3b1 574 is, on average, colder (T e 3c 9000 K), less dense (n e 3c 2
7 104 cm-3), and more ionized (x e 3c 0.7) than the Par-Lup 3-4 jet (T e 3c 13,000 K, n e 3c 6
7 104 cm-3, x e < 0.4), even if the existence of a higher density component (n e 3c 2
7 105 cm-3) is probed by the [Fe III] and [Fe II] ultra-violet lines. The physical conditions derived from the iron lines are compared with shock models suggesting that the shock at work in ESO-H\u3b1 574 is faster and likely more energetic than the Par-Lup 3-4 shock. This latter feature is confirmed by the high percentage of gas-phase iron measured in ESO-H\u3b1 574 (50%-60% of its solar abundance in comparison with less than 30% in Par-Lup 3-4), which testifies that the ESO-H\u3b1 574 shock is powerful enough to partially destroy the dust present inside the jet. This work demonstrates that a multiline Fe analysis can be effectively used to probe the excitation and ionization conditions of the gas in a jet without any assumption on ionic abundances. The main limitation on the diagnostics resides in the large uncertainties of the atomic data, which, however, can be overcome through a statistical approach involving many line
Lack of relationship between TIMP-1 tumour cell immunoreactivity, treatment efficacy and prognosis in patients with advanced epithelial ovarian cancer
<p>Abstract</p> <p>Background</p> <p>Tissue inhibitor of metalloproteinase 1 (TIMP-1) is a natural inhibitor of the matrix metalloproteinases (MMPs) which are proteolytic enzymes involved in degradation of extracellular matrix thereby favoring tumour cell invasion and metastasis. TIMP-1 activity in tumour tissue may therefore play an essential role in the progression of a malignant tumour.</p> <p>The primary aim of the present study was to evaluate TIMP-1 protein immunoreactivity in tissue from primary ovarian cancer patients and associate these findings with the course of the disease including response to treatment in the individual patient.</p> <p>Methods</p> <p>TIMP-1 was assessed by immunohistochemistry (in tissue micro arrays) in a total of 163 ovarian cancer specimens obtained from primary debulking surgery during 1991-1994 as part of a randomized clinical protocol.</p> <p>Results</p> <p>Positive TIMP-1 immunoreactivity was found in 12.3% of the tumours. The median survival time for the 143 patients with TIMP-1 negative tumours was 23.7 months [19.0-29.4] 95% CI, while the median survival time for the 20 patients with TIMP-1 positive tumours was 15.9 months [12.3-27.4] 95% CI. Although a difference of 7.8 months in median overall survival in favor of the TIMP-1 tumour negative patients was found, this difference did not reach statistical significance (<it>p </it>= 0.28, Kaplan-Meier, log-rank test). Moreover, TIMP-1 immunoreactivity was not associated with CA125 response (p = 0.53) or response at second look surgery (p = 0.72).</p> <p>Conclusion</p> <p>TIMP-1 immunoreactivity in tumour tissue from patients with primary epithelial ovarian cancer did not correlate with patient survival or response to combination platinum/cyclophosphamide therapy.</p
Mutations in the potassium channel subunit KCNE1 are associated with early-onset familial atrial fibrillation
<p>Abstract</p> <p>Background</p> <p>Atrial fibrillation (AF) is the most common arrhythmia. The potassium current I<sub>Ks </sub>is essential for cardiac repolarization. Gain-of-function mutations in K<sub>V</sub>7.1, the pore-forming α-subunit of the I<sub>Ks </sub>channel, have been associated with AF. We hypothesized that early-onset lone AF is associated with mutations in the I<sub>Ks </sub>channel regulatory subunit KCNE1.</p> <p>Methods</p> <p>In 209 unrelated early-onset lone AF patients (< 40 years) the entire coding sequence of <it>KCNE1 </it>was bidirectionally sequenced. We analyzed the identified KCNE1 mutants electrophysiologically in heterologous expression systems.</p> <p>Results</p> <p>Two non-synonymous mutations G25V and G60D were found in <it>KCNE1 </it>that were not present in the control group (n = 432 alleles) and that have not previously been reported in any publicly available databases or in the exom variant server holding exom data from more than 10.000 alleles. Proband 1 (female, age 45, G25V) had onset of paroxysmal AF at the age of 39 years. Proband 2 (G60D) was diagnosed with lone AF at the age of 33 years. The patient has inherited the mutation from his mother, who also has AF. Both probands had no mutations in genes previously associated with AF. In heterologous expression systems, both mutants showed significant gain-of-function for I<sub>Ks </sub>both with respect to steady-state current levels, kinetic parameters, and heart rate-dependent modulation.</p> <p>Conclusions</p> <p>Mutations in K<sub>V</sub>7.1 leading to gain-of-function of I<sub>Ks </sub>current have previously been described in lone AF, yet this is the first time a mutation in the beta-subunit <it>KCNE1 </it>is associated with the disease. This finding further supports the hypothesis that increased potassium current enhances AF susceptibility.</p
Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial
Background
Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain.
Methods
RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and
ClinicalTrials.gov
,
NCT00541047
.
Findings
Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths.
Interpretation
Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy.
Funding
Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society
Chloride Cotransporters as a Molecular Mechanism underlying Spreading Depolarization-Induced Dendritic Beading
Spreading depolarizations (SDs) are waves of sustained neuronal and glial depolarization that propagate massive disruptions of ion gradients through the brain. SD is associated with migraine aura and recently recognized as a novel mechanism of injury in stroke and brain trauma patients. SD leads to neuronal swelling as assessed in real time with two-photon laser scanning microscopy (2PLSM). Pyramidal neurons do not express aquaporins and thus display low inherent water permeability, yet SD rapidly induces focal swelling (beading) along the dendritic shaft by unidentified molecular mechanisms. To address this issue, we induced SD in murine hippocampal slices by focal KCl microinjection and visualized the ensuing beading of dendrites expressing EGFP by 2PLSM. We confirmed that dendritic beading failed to arise during large (100 mOsm) hyposmotic challenges, underscoring that neuronal swelling does not occur as a simple osmotic event. SD-induced dendritic beading was not prevented by pharmacological interference with the cytoskeleton, supporting the notion that dendritic beading may result entirely from excessive water influx. Dendritic beading was strictly dependent on the presence of Cl(−), and, accordingly, combined blockade of Cl(−)-coupled transporters led to a significant reduction in dendritic beading without interfering with SD. Furthermore, our in vivo data showed a strong inhibition of dendritic beading during pharmacological blockage of these cotransporters. We propose that SD-induced dendritic beading takes place as a consequence of the altered driving forces and thus activity for these cotransporters, which by transport of water during their translocation mechanism may generate dendritic beading independently of osmotic forces. SIGNIFICANCE STATEMENT Spreading depolarization occurs during pathological conditions such as stroke, brain injury, and migraine and is characterized as a wave of massive ion translocation between intracellular and extracellular space in association with recurrent transient focal swelling (beading) of dendrites. Numerous ion channels have been demonstrated to be involved in generation and propagation of spreading depolarization, but the molecular machinery responsible for the dendritic beading has remained elusive. Using real-time in vitro and in vivo two-photon laser scanning microscopy, we have identified the transport mechanisms involved in the detrimental focal swelling of dendrites. These findings have clear clinical significance because they may point to a new class of pharmacological targets for prevention of neuronal swelling that consequently will serve as neuroprotective agents
Chloride Cotransporters as a Molecular Mechanism underlying Spreading Depolarization-Induced Dendritic Beading
Spreading depolarizations (SDs) are waves of sustained neuronal and glial depolarization that propagate massive disruptions of ion gradients through the brain. SD is associated with migraine aura and recently recognized as a novel mechanism of injury in stroke and brain trauma patients. SD leads to neuronal swelling as assessed in real time with two-photon laser scanning microscopy (2PLSM). Pyramidal neurons do not express aquaporins and thus display low inherent water permeability, yet SD rapidly induces focal swelling (beading) along the dendritic shaft by unidentified molecular mechanisms. To address this issue, we induced SD in murine hippocampal slices by focal KCl microinjection and visualized the ensuing beading of dendrites expressing EGFP by 2PLSM. We confirmed that dendritic beading failed to arise during large (100 mOsm) hyposmotic challenges, underscoring that neuronal swelling does not occur as a simple osmotic event. SD-induced dendritic beading was not prevented by pharmacological interference with the cytoskeleton, supporting the notion that dendritic beading may result entirely from excessive water influx. Dendritic beading was strictly dependent on the presence of Cl(−), and, accordingly, combined blockade of Cl(−)-coupled transporters led to a significant reduction in dendritic beading without interfering with SD. Furthermore, our in vivo data showed a strong inhibition of dendritic beading during pharmacological blockage of these cotransporters. We propose that SD-induced dendritic beading takes place as a consequence of the altered driving forces and thus activity for these cotransporters, which by transport of water during their translocation mechanism may generate dendritic beading independently of osmotic forces. SIGNIFICANCE STATEMENT Spreading depolarization occurs during pathological conditions such as stroke, brain injury, and migraine and is characterized as a wave of massive ion translocation between intracellular and extracellular space in association with recurrent transient focal swelling (beading) of dendrites. Numerous ion channels have been demonstrated to be involved in generation and propagation of spreading depolarization, but the molecular machinery responsible for the dendritic beading has remained elusive. Using real-time in vitro and in vivo two-photon laser scanning microscopy, we have identified the transport mechanisms involved in the detrimental focal swelling of dendrites. These findings have clear clinical significance because they may point to a new class of pharmacological targets for prevention of neuronal swelling that consequently will serve as neuroprotective agents
Protein Interactomes of Mendelian Long QT Syndrome Genes are Associated to QT Interval Variation in the General Population and Augment Genome‐Wide Association Data
Modulation of cerebrospinal fluid secretion facilitated by serotonergic and noradrenergic receptors in the rat choroid plexus
Abstract Background The intracranial pressure (ICP) increases at night, partly due to an elevated rate of cerebrospinal fluid (CSF) secretion, which may have therapeutic implications for pressure-related disorders. With similar diurnal regulation in nocturnal rodents and diurnal humans, the diurnally fluctuating CSF dynamics may be governed by nightly shifts in central neuromodulators. Method We determined the CSF secretion rate in rats upon modulation by melatonin, serotonin, and noradrenaline in association with transcript and protein analysis of choroid plexus receptors. Results The CSF secretion rate was unaffected by melatonin administration, but was reduced with central delivery of serotonin or noradrenaline. The latter produced only a brief surge in the CSF secretion rate upon systemic delivery. The neuromodulators may thus act on the luminal side of the choroid plexus on the selection of serotonergic and adrenergic receptors expressed in this tissue, some of which displayed diurnal regulation. Conclusion Diurnally fluctuating central serotonin and noradrenaline levels and/or diurnal fluctuation in choroid plexus adrenergic receptor expression may contribute to the diurnal shift in human and rodent CSF secretion rate. These signaling pathways could thus potentially be harnessed to create pharmacological modulation of the CSF secretion rate in pathological conditions of elevated ICP
