4 research outputs found

    Design of the muscles in motion study: a randomized controlled trial to evaluate the efficacy and feasibility of an individually tailored home-based exercise training program for children and adolescents with juvenile dermatomyositis

    Get PDF
    BACKGROUND: Juvenile dermatomyositis (JDM) is a rare, often chronic, systemic autoimmune disease of childhood, characterized by inflammation of the microvasculature of the skeletal muscle and skin. Prominent clinical features include significant exercise intolerance, muscle weakness, and fatigue. Despite pharmacological improvements, these clinical features continue to affect patients with JDM, even when the disease is in remission. Exercise training is increasingly utilized as a non-pharmacological intervention in the clinical management of (adult) patients with chronic inflammatory conditions; however no randomized controlled trials (RCT) have been performed in JDM. In the current study, the efficacy and feasibility of an exercise training program in patients with JDM will be examined. METHODS/DESIGN: Subjects (n = 30) will include 8–18 year olds diagnosed with JDM. The intervention consists of an individually tailored 12-weeks home-based exercise training program in which interval training on a treadmill is alternated with strength training during each session. The program is based on previous literature and designed with a defined frequency, intensity, time, and type of exercise (FITT principles). Primary outcome measures include aerobic exercise capacity, isometric muscle strength, and perception of fatigue. The study methodology has been conceived according to the standards of the CONSORT guidelines. The current study will be a multi-center (4 Dutch University Medical Centers) RCT, with the control group also entering the training arm directly after completion of the initial protocol. Randomization is stratified according to age and gender. DISCUSSION: The current study will provide evidence on the efficacy and feasibility of an individually tailored 12-week home-based exercise training program in youth with JDM. TRIAL REGISTRATION: Medical Ethics Committee of the University Medical Center Utrecht, the Netherlands: 11–336; Netherlands Trial Register (NTR): NTR 3184

    Effects of Robot-Assisted Therapy for the Upper Limb after Stroke

    No full text
    Background. Robot technology for poststroke rehabilitation is developing rapidly. A number of new randomized controlled trials (RCTs) have investigated the effects of robot-assisted therapy for the paretic upper limb (RT-UL). Objective. To systematically review the effects of poststroke RT-UL on measures of motor control of the paretic arm, muscle strength and tone, upper limb capacity, and basic activities of daily living (ADL) in comparison with nonrobotic treatment. Methods. Relevant RCTs were identified in electronic searches. Meta-analyses were performed for measures of motor control (eg, Fugl-Meyer Assessment of the arm; FMA arm), muscle strength and tone, upper limb capacity, and basic ADL. Subgroup analyses were applied for the number of joints involved, robot type, timing poststroke, and treatment contrast. Results. Forty-four RCTs (N = 1362) were included. No serious adverse events were reported. Meta-analyses of 38 trials (N = 1206) showed significant but small improvements in motor control (∼2 points FMA arm) and muscle strength of the paretic arm and a negative effect on muscle tone. No effects were found for upper limb capacity and basic ADL. Shoulder/elbow robotics showed small but significant effects on motor control and muscle strength, while elbow/wrist robotics had small but significant effects on motor control. Conclusions. RT-UL allows patients to increase the number of repetitions and hence intensity of practice poststroke, and appears to be a safe therapy. Effects on motor control are small and specific to the joints targeted by RT-UL, whereas no generalization is found to improvements in upper limb capacity. The impact of RT-UL started in the first weeks poststroke remains unclear. These limited findings could mainly be related to poor understanding of robot-induced motor learning as well as inadequate designing of RT-UL trials, by not applying an appropriate selection of stroke patients with a potential to recovery at baseline as well as the lack of fixed timing of baseline assessments and using an insufficient treatment contrast early poststroke
    corecore