12 research outputs found

    Comparison of the functional and structural characteristics of rare TSC2 variants with clinical and genetic findings

    Get PDF
    The TSC1 and TSC2 gene products interact to form the tuberous sclerosis complex (TSC), an important negative regulator of the mechanistic target of rapamycin complex 1 (TORC1). Inactivating mutations in TSC1 or TSC2 cause TSC, and the identification of a pathogenic TSC1 or TSC2 variant helps establish a diagnosis of TSC. However, it is not always clear whether TSC1 and TSC2 variants are inactivating. To determine whether TSC1 and TSC2 variants of uncertain clinical significance affect TSC complex function and cause TSC, in vitro assays of TORC1 activity can be employed. Here we combine genetic, functional, and structural approaches to try and classify a series of 15 TSC2 VUS. We investigated the effects of the variants on the formation of the TSC complex, on TORC1 activity and on TSC2 pre-mRNA splicing. In 13 cases (87%), the functional data supported the hypothesis that the identified TSC2 variant caused TSC. Our results illustrate the benefits and limitations of functional testing for TSC

    RNF12 Activates Xist and Is Essential for X Chromosome Inactivation

    Get PDF
    In somatic cells of female placental mammals, one of the two X chromosomes is transcriptionally silenced to accomplish an equal dose of X-encoded gene products in males and females. Initiation of random X chromosome inactivation (XCI) is thought to be regulated by X-encoded activators and autosomally encoded suppressors controlling Xist. Spreading of Xist RNA leads to silencing of the X chromosome in cis. Here, we demonstrate that the dose dependent X-encoded XCI activator RNF12/RLIM acts in trans and activates Xist. We did not find evidence for RNF12-mediated regulation of XCI through Tsix or the Xist intron 1 region, which are both known to be involved in inhibition of Xist. In addition, we found that Xist intron 1, which contains a pluripotency factor binding site, is not required for suppression of Xist in undifferentiated ES cells. Analysis of female Rnf12−/− knockout ES cells showed that RNF12 is essential for initiation of XCI and is mainly involved in the regulation of Xist. We conclude that RNF12 is an indispensable factor in up-regulation of Xist transcription, thereby leading to initiation of random XCI

    Cystic renal-epithelial derived induced pluripotent stem cells from polycystic kidney disease patients

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, leading to kidney failure in most patients. In approximately 85% of cases, the disease is caused by mutations in PKD1. How dysregulation of PKD1 leads to cyst formation on a molecular level is unknown. Induced pluripotent stem cells (iPSCs) are a powerful tool for in vitro modeling of genetic disorders. Here, we established ADPKD patient-specific iPSCs to study the function of PKD1 in kidney development and cyst formation in vitro. Somatic mutations are proposed to be the initiating event of cyst formation, and therefore iPSCs were derived from cystic renal epithelial cells rather than fibroblasts. Mutation analysis of the ADPKD iPSCs revealed germline mutations in PKD1 but no additional somatic mutations in PKD1/PKD2. Although several somatic mutations in other genes implicated in ADPKD were identified in cystic renal epithelial cells, only few of these mutations were present in iPSCs, indicating a heterogeneous mutational landscape, and possibly in vitro cell selection before and during the reprogramming process. Whole-genome DNA methylation analysis indicated that iPSCs derived from renal epithelial cells maintain a kidney-specific DNA methylation memory. In addition, comparison of PKD1+/− and control iPSCs revealed differences in DNA methylation associated with the disease history. In conclusion, we generated and characterized iPSCs derived from cystic and healthy control renal epithelial cells, which can be used for in vitro modeling of kidney development in general and cystogenesis in particular

    RNF12 is an X-Encoded dose-dependent activator of X chromosome inactivation

    Get PDF
    In somatic cells of female placental mammals, one X chromosome is inactivated to minimize sex-related dosage differences of X-encoded genes. Random X chromosome inactivation (XCI) in the embryo is a stochastic process, in which each X has an independent probability to initiate XCI, triggered by the nuclear concentration of one or more X-encoded XCI-activators. Here, we identify the E3 ubiquitin ligase RNF12 as an important XCI-activator. Additional copies of mouse Rnf12 or human RNF12 result in initiation of XCI in male mouse ES cells and on both X chromosomes in a substantial percentage of female mouse ES cells. This activity is dependent on an intact open reading frame of Rnf12 and correlates with the transgenic expression level of RNF12. Initiation of XCI is markedly reduced in differentiating female heterozygous Rnf12(+/-) ES cells. These findings provide evidence for a dose-dependent role of RNF12 in the XCI counting and initiation process
    corecore