23 research outputs found

    The role of pharmacology in anticancer drug development

    Get PDF
    Drug development consists of many sequential and parallel steps; failure in one of the steps can lead to discontinuation of the process. The process is time-consuming and very expensive, especially the clinical phase. In order to enhance cancer drug development in the 1980s, the National Cancer Institute (NCI) adopted a new screening system using 60 different tumour cell lines from various histologies. All standard drugs were tested in this panel and it is still open for testing of new chemical entities (NCE) of potential interest. The European NCI compounds initiative, a collaborative programme of the NCI, the Cancer Research Campaign (CRC; now CRUK) and the Pharmacology and Molecular Mechanism Group (PAMM) of the EORTC (European Organization on Research and Treatment of Cancer), was initiated in 1993. The programme aimed to help the NCI reducing its backlog of in vivo testing by further evaluation of interesting European compounds using a pharmacologically directed approach. Considerable multidisciplinary expertise in drug development was combined by the CRC and EORTC-PAMM: chemists, pharmacists, biologists, pharmacologists, oncologists. Selection criteria for European NCI compounds included novelty of the NCE, in vitro activity, if available in vivo and hollow fibre activity, and COMPARE negativity. Over a period of more than 20 years 95 out of approximately 2,000 reviewed compounds were selected. These compounds were put through a series of stepwise pharmacological tests comprising solubility (suitable formulation to administer the NCE to mice), feasibility to develop a simple analytical assay (usually HPLC), limited toxicology and angiogenic properties. This paper provides examples to illustrate the rigorousness of the elimination process of the compounds and discusses the way to improve the process by inclusion of more physico-chemical parameters

    Pharmacologically directed strategies in academic anticancer drug discovery based on the European NCI compounds initiative

    Get PDF
    Background: The European NCI compounds programme, a joint initiative of the EORTC Research Branch, Cancer Research Campaign and the US National Cancer Institute, was initiated in 1993. The objective was to help the NCI in reducing the backlog of in vivo testing of potential anticancer compounds, synthesised in Europe that emerged from the NCI in vitro 60-cell screen. Methods: Over a period of more than twenty years the EORTC—Cancer Research Campaign panel reviewed ~2000 compounds of which 95 were selected for further evaluation. Selected compounds were stepwise developed with clear go/no go decision points using a pharmacologically directed programme. Results: This approach eliminated quickly compounds with unsuitable pharmacological properties. A few compounds went into Phase I clinical evaluation. The lessons learned and many of the principles outlined in the paper can easily be applied to current and future drug discovery and development programmes. Conclusions: Changes in the review panel, restrictions regarding numbers and types of compounds tested in the NCI in vitro screen and the appearance of targeted agents led to the discontinuation of the European NCI programme in 2017 and its transformation into an academic platform of excellence for anticancer drug discovery and development within the EORTC-PAMM group. This group remains open for advice and collaboration with interested parties in the field of cancer pharmacology

    La fecondation in vitro a l'Hopital Erasme: 10 ans et 1000 grossesses plus tard....

    No full text
    This contribution summarize ten years of in vitro fertilization of clinical work. Activity growth, improvements of results (mean fertilization rate increased from 45% to 58%, fertilization failure dropped from 18% to 7%, pregnancy chances gains 9% to reach 44% per trial) and new treatments possibilities (severe male infertility) thanks to the ICSI technic were the major characteristics of this last ten years. The original anonymous oocyte donation program with donors permutation initiated as soon as 1990 has imposed itself due to it's exceptional efficiency with a pregnancy rate of 95% per oocyte pick up on a population of 46 donors and 145 recipient cycles. Thanks to the large population studied (4028 cycles, 1071 pregnancies), the tendencies in human fecundity (impact of age) and the risks linked to multiples pregnancies could be highlighted, stressing the importance of future developments presented in the other contributions following this general presentation of results.English AbstractJournal Articleinfo:eu-repo/semantics/publishe

    Retrovirus-mediated gene transfer of the human multidrug resistance-associated protein into hematopoietic cells protects mice from chemotherapy-induced leukopenia

    No full text
    Utilization of chemotherapy for the treatment of tumors is mainly limited by its hematological toxicity. Because of the low-level expression of drug resistance genes, transduction of hematopoietic progenitors with multidrug resistance 1 (MDR1) or multidrug resistance-associated protein (MRP) genes should provide protection from chemotherapeutic agent toxicity. Successful transfer of drug resistance genes into hematopoietic cells may allow the administration of higher doses of chemotherapy and, thus, increase regression of chemosensitive tumors. The interest in the use of MRP as an alternative to MDR1 for bone marrow protection lies in its different modulation. This would allow, in the same patient, the use of MDR1 reversal agents to decrease MDR1 tumor resistance without reversing bone marrow (BM) protection of the MRP-transduced hematopoietic cells, since MRP expression is not reversed by these agents. We have constructed MRP-containing retroviral vectors using the phosphoglycerate kinase promoter and generated ecotropic producer cells. Lethally irradiated mice were engrafted with BM cells transduced by coculture with MRP producer cells. Evidence of long-term (9 months) gene transfer was provided by PCR of peripheral blood from MRP-transduced mice. Southern blot analysis confirmed the integrity of the provirus in the MRP-transduced mice. Long-term MRP expression (>5 months) was detected by RT-PCR and fluorescence-activated cell sorting of blood from living mice. High-level expression of MRP in murine hematopoietic cells reduces doxorubicin-induced leukopenia and mortality. Furthermore, we show in vivo selection of MRP-transduced cells following doxorubicin administration, with better and more significant chemoprotection after the second chemotherapy cycle. These data indicate that MRP retroviral gene transfer may be useful for chemoprotection and selection
    corecore