6 research outputs found

    Feedback and feedforward processes underlying grip-load force coupling during cyclic arm movements

    No full text
    During transport of hand-held objects, the grip force is modulated in parallel with the load force changes. The control scheme underlying this grip-load force coupling involves subtle interplay between feedforward and feedback mechanisms. Based on internal models of the motor system and object properties, the load force can be predicted and the GF motor command can be specified in a feedforward manner. Moreover, during the course of arm movement, the CNS is informed by sensory feedback about mechanical events such as the lift-off of the object, slippage or excessive grip force. This information is used to correct the motor commands and to update the internal model of the motor apparatus and object. In this thesis, three experiments were conducted to examine the relative contributions of sensory-driven and anticipatory control of GF adjustments during cyclic vertical movement with a hand-held load. The main point was to assess whether internal models underlying the grip-load force coupling are robust when the environmental context was changed or when the sensory feedback was suppressed. Two experiments in parabolic flight were conducted to study the effects of a change in gravity on the dynamics of prehension. The main perturbation was that the novice subjects applied unnecessarily high safety margins during their first trial at 0 and 1.8 g in order to secure the grasp insofar as the gravitational component of the load force was unpredictable. By contrast, the temporal coupling between GF and LF was maintained regardless of the gravity conditions because the inertial component of the load could be still predicted from the arm motor command (efference copy). In the second study performed during parabolic flight, we have observed that the subjects were able to exert the same grip force for equivalent load generated either by a change of mass, gravity or acceleration despite the fact that it requires different arm motor commands. These two experiments brought further evidence that the predictive mechanisms largely contribute to the GF adjustment. Static forces such gravity are taken into account in the motor plan allowing adequate motor command and precise prediction of the incoming load force change. The GF output would depend on the precision of this prediction that can be evaluatedonly after the movement onset through sensory information about the actual state of the system. The third experiment performed in this thesis studied the role of cutaneous afferents in object manipulation by anesthetizing the thumb and index finger. In addition to their phasic slip-detection function, the cutaneous afferents are required for setting the background level of the grip force. Actually, in absence of tactile feedback, the temporal coupling between the grip and load forces is maintained but the mean magnitude of GF progressively decreases leading to object slipping. It is hypothesized that accumulating error occurred in the LF prediction leading to inadequate level of GF. Cutaneous afferents are thus required to correct and maintain the internal model of the arm-hand object system.(READ 3)--UCL, 200

    The effects of a change in gravity on the dynamics of prehension.

    No full text
    Investigating cyclic vertical arm movements with an instrumented hand-held load in an airplane undergoing parabolic flight profiles allowed us to determine how humans modulate their grip force when the gravitational and the inertial components of the load force are varied independently. Eight subjects participated in this study; four had already experienced parabolic flights and four had not. The subjects were asked to move the load up and down continuously at three different gravitational conditions (1 g, 1.8 g, and 0 g). At 1 g, the grip force precisely anticipated the fluctuations in the load force, which was maximum at the bottom of the object trajectory and minimum at the top. When gravity changed, the temporal coupling between grip force and load force persisted for all subjects from the first parabola. At 0 g, the grip force was accurately adjusted to the two load force peaks occurring at the two opposite extremes of the trajectory due to the absence of weight. While the experienced subjects exerted a grip force appropriate to a new combination of weight and inertia since their first trial, the inexperienced subjects dramatically increased their grip when faced with either high or low force levels for the first time. Then they progressively released their grip until a continuous grip-load force relationship with regard to 1 g was established after the fifth parabola. We suggest that a central representation of the new gravitational field was rapidly acquired through the incoming vestibular and somatic sensory information

    Do novel gravitational environments alter the grip-force/load-force coupling at the fingertips?

    No full text
    In this experiment we examined the coupling between grip force and load force observed during cyclic vertical arm movements with a hand-held object, performed in different gravitational environments. Six subjects highly experienced in parabolic flight participated in this study. They had to continuously move a cylindrical object up and down in the different gravity fields (1g, 1.8 g and 0 g) induced by parabolic flights. The imposed movement frequency was 1 Hz, the object mass was either 200 or 400 g, the amplitude of movement was either 20 or 40 cm and an additional mass of 200 g could be wound around the forearm. Each subject performed the task during 15 consecutive parabolas. The coordination between the grip force normal to the surface and the tangential load force was examined in nine loading conditions. We observed that the same normal grip force was used for equivalent loads generated by changes of mass, gravity or acceleration despite the fact that these loads required different motor commands to move the arm. Moreover, our results suggest that the gravitational and inertial components of the load are treated adequately and independently by the internal models used to predictively control the required grip force. These results indicate that the forward internal models used to control precision grip take into account the dynamic characteristics of the upper limb, the object and the environment to predict the object's acceleration and, in turn, the load force acting at the fingertips

    Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects

    No full text
    Previous research has shown that grip and load forces are modulated simultaneously during manipulation of a hand-held object. This close temporal coupling suggested that both forces are controlled by an internal model within the CNS that predicts the changes in tangential force on the fingers. The objective of the present study was to examine how the internal model would compensate for the loss of cutaneous sensation through local anesthesia of the index and thumb. Ten healthy adult subjects (5 men and 5 women aged 20-57 yr) were asked to grasp, lift, and hold stationary, a 250 g object for 20 s. Next, the subjects were asked to perform vertical oscillatory movements over a distance of 20 cm at a rate of 1.0 Hz for 30 s. Eleven trials were performed with intact sensation, and 11 trials after a local ring-block anesthesia of the index and thumb with bupivacain (5 mg/ml). During static holding, loss of cutaneous sensation produced a significant increase in the safety margin. However, the grip force declined significantly over the 20-s static hold period. During oscillatory arm movements, grip and load forces were continuously modulated together in a predictive manner as suggested by Flanagan and Wing. Again, the grip force declined over the 30-s movement, and 7/10 subjects dropped the object at least once. With intact sensation, the object was never dropped; but with the fingers anesthetized, it was dropped on 36% of the trials, and a significant slip occurred on a further 12%. The mean correlation between the grip and load forces for all subjects deteriorated from 0.71 with intact sensation to 0.48 after digital anesthesia. However, a cross-correlation calculated between the grip and load forces indicated that the phase lag was approximately zero both with and without digital anesthesia. Taken together, the data from the present study suggest that cutaneous afferents are required for setting and maintaining the background level of the grip force in addition to their phasic slip-detection function and their role in adapting the grip force/load force ratio to the friction on initial contact with an object. Finally, at a more theoretical level, they correct and maintain an internal model of the physical properties of hand-held objects
    corecore