326 research outputs found

    Using the Sun to estimate Earth-like planets detection capabilities. V. Parameterizing the impact of solar activity components on radial velocities

    Full text link
    Stellar activity induced by active structures (eg, spots, faculae) is known to strongly impact the radial velocity time series. It then limits the detection of small planetary RV signals (eg, an Earth-mass planet in the habitable zone of a solar-like star). In previous papers, we studied the detectability of such planets around the Sun seen as an edge-on star. For that purpose, we computed the RV and photometric variations induced by solar magnetic activity, using all active structures observed over one entire cycle. Our goal is to perform similar studies on stars with different physical and geometrical properties. As a first step, we focus on Sun-like stars seen with various inclinations, and on estimating detection capabilities with forthcoming instruments. To do so, we first parameterize the solar active structures with the most realistic pattern so as to obtain results consistent with the observed ones. We simulate the growth, evolution and decay of solar spots, faculae and network, using parameters and empiric laws derived from solar observations and literature. We generate the corresponding structure lists over a full solar cycle. We then build the resulting spectra and deduce the RV and photometric variations for a `Sun' seen with various inclinations. The produced RV signal takes into account the photometric contribution of structures as well as the attenuation of the convective blueshift. The comparison between our simulated activity pattern and the observed one validates our model. We show that the inclination of the stellar rotation axis has a significant impact on the time series. RV long-term amplitudes as well as short-term jitters are significantly reduced when going from edge-on to pole-on configurations. Assuming spin-orbit alignment, the optimal configuration for planet detection is an inclined star (i~45{\deg}).Comment: Accepted to Astronomy and Astrophysics on May, 27th 2015. The manuscript includes 22 pages, 20 figure

    Variability in stellar granulation and convective blueshift with spectral type and magnetic activity. II. From young to old main-sequence K-G-F stars

    Full text link
    The inhibition of small-scale convection in the Sun dominates the long-term radial velocity (RV) variability: it therefore has a critical effect on light exoplanet detectability using RV techniques. We here extend our previous analysis of stellar convective blueshift and its dependence on magnetic activity to a larger sample of stars in order to extend the Teff range, to study the impact of other stellar properties, and finally to improve the comparison between observed RV jitter and expected RV variations. We estimate a differential velocity shift for Fe and Ti lines of different depths and derive an absolute convective blueshift using the Sun as a reference for a sample of 360 F7-K4 stars with different properties (age, Teff, metallicity). We confirm the strong variation in convective blueshift with Teff and its dependence on (as shown in the line list in Paper I) activity level. Although we do not observe a significant effect of age or cyclic activity, stars with a higher metallicity tend to have a lower convective blueshift, with a larger effect than expected from numerical simulations. Finally, we estimate that for 71% of the stars in our sample the RV and LogR'HK variations are compatible with the effect of activity on convection, as observed in the solar case, while for the other stars, other sources (such as binarity or companions) must be invoked to explain the large RV variations. We also confirm a relationship between LogR'HK and metallicity, which may affect discussions of the possible relationship between metallicity and exoplanets, as RV surveys are biased toward low LogR'HK and possibly toward high-metallicity stars. We conclude that activity and metallicity strongly affect the small-scale convection levels in stars in the F7-K4 range, with a lower amplitude for the lower mass stars and a larger amplitude for low-metallicity stars.Comment: 12 pages, 9 figures ; accepted in Astronomy and Astrophysic

    Extrasolar planets and brown dwarfs around AF-type stars. IX. The HARPS southern sample

    Full text link
    Massive, Main-Sequence AF-type stars have so far remained unexplored in past radial velocity surveys, due to their small number of spectral lines and their high rotational velocities that prevent the classic RV computation method. Our aim was to search for giant planets around AF MS stars, to get first statistical information on their occurrence rate and to compare the results with evolved stars and lower-mass MS stars. We used the HARPS spectrograph located on the 3.6m telescope at ESO La Silla Observatory to observe 108 AF MS stars with B-V in the -0.04 to 0.58 range and masses in the range 1.1-3.6 Msun. We used our SAFIR software specifically developed to compute the radial velocities of these early-type stars. We report the new detection of a mpsini = 4.51 Mjup companion with a ~826-day period to the F6V dwarf HD111998. We present new data on the 2-planet system around the F6IV-V dwarf HD60532. We also report the detection of 14 binaries with long-term RV trends. 70% of our targets show detection limits between 0.1 and 10 Mjup in the 1 to 10^3-day range. We derive brown dwarf (13 < mpsini < 80 Mjup) occurrence rates in the 1 to 10^3-day range of 22+52_{-2}^{+5}% and 2.62.6+6.72.6_{-2.6}^{+6.7}% for stars with masses in the ranges 1.1-1.5 and 1.5-3 Msun, respectively. As for Jupiter-mass companions (1 < mpsini < 13 Mjup), we get occurrence rates in the 1 to 10^3-day range of 40.9+5.94_{-0.9}^{+5.9}% and 6.36.3+15.96.3_{-6.3}^{+15.9}% respectively for the same stellar mass ranges. When considering the same Jupiter-mass companions but periods in the 1 to 100-day range only, we get occurrence rates of 22+5.22_{-2}^{+5.2}% and 3.93.9+9.93.9_{-3.9}^{+9.9}%. Given the present error bars, these results do not show a significant difference with companion frequencies derived for solar-like stars.Comment: 23 pages (text), 15 figures, accepted in Astronomy and Astrophysic

    Independent confirmation of {\beta} Pictoris b imaging with NICI

    Full text link
    Context. {\beta} Pictoris b is one of the most studied objects nowadays since it was identified with VLT/NaCo as a bona-fide exoplanet with a mass of about 9 times that of Jupiter at an orbital separation of 8-9 AU. The link between the planet and the dusty disk is unambiguously attested and this system provides an opportunity to study the disk/planet interactions and to constrain formation and evolutionary models of gas giant planets. Still, {\beta} Pictoris b had never been confirmed with other telescopes so far. Aims. We aimed at an independent confirmation using a different instrument. Methods. We retrieved archive images from Gemini South obtained with the instrument NICI, which is designed for high contrast imaging. The observations combine coronagraphy and angular differential imaging and were obtained at three epochs in Nov. 2008, Dec. 2009 and Dec. 2010. Results. We report the detection with NICI of the planet {\beta} Pictoris b in Dec. 2010 images at a separation of 404 \pm 10 mas and P A = 212.1 \pm 0.7{\deg} . It is the first time this planet is observed with a telescope different than the VLT.Comment: Letter accepted for publication in Astronomy and Astrophysics on Feb. 21, 2013. 4 pages, 2 figure

    Exoplanets: Foreword

    Get PDF

    Exocomets in the circumstellar gas disk of HD 172555

    Full text link
    The source HD172555 is a young A7V star surrounded by a debris disk with a gaseous component. Here, we present the detection of variable absorption features detected simultaneously in the Ca II K and H doublet lines (at 3,933 and 3,968 Angstrom). We identified the presence of these absorption signatures at four different epochs in the 129 HARPS high-resolution spectra gathered between 2004 and 2011. These transient absorption features are most likely due to Falling Evaporating Bodies (FEBs, or exocomets) that produce absorbing gas observed transiting in front of the central star. We also detect a stable Ca II absorption component at the star's radial velocity. With no corresponding detection in the Na I line, the resulting very low upper limit for the NaI/CaII ratio suggests that this absorption is due to circumstellar gas.Comment: Accepted for publication in Astronomy&Astrophysics Letter

    Activity time series of old stars from late F to early K VI. Exoplanet mass characterisation and detectability in radial velocity

    Full text link
    Stellar variability impacts radial velocities at various timescales and therefore the detectability of exoplanets and the mass determination based on this technique. It is necessary to implement systematic studies, to delineate the current limitations of RV techniques to detect Earth-like planets. This paper aims are to investigate whether the targeted 10% mass uncertainty from RV follow-up of transits detected by PLATO can be reached, and to analyse and quantify Earth-like planet detectability for various spectral types. We implemented blind tests based on a large data set of realistic synthetic time series reproducing different phenomena leading to stellar variability such as complex magnetic activity patterns as well as flows, covering F6-K4 stars and a wide range of activity levels. The 10% mass uncertainty for a 1 MEarth in the habitable zone of a G2 star cannot be reached, even with an improved version of a usual correction of stellar activity and even for long-duration (ten years) well-sampled observations. This level can be reached for masses above 3 MEarth or for K4 stars alone. We quantify the maximum dispersion of the RV residuals needed to reach this 10% level, assuming the correction method and models do not affect the planetary signal. Several other methods were tested and do not allow a significantly improvement of this limited performance. Similarly, such low-mass planets in the habitable zone cannot be detected with a similar correction: blind tests lead to very low detection rates for 1 MEarth and a very high level of false positives. Very significant and new improvements with respect to methods based on activity indicators to correct for stellar activity must be devised at all timescales to reach the objective of 10% uncertainty on the mass or to detect such planets in RV. Methods based on the correlation with activity indicators are unlikely to be sufficient.Comment: Paper accepted in Astronomy and Astrophysic

    The Arches Cluster - Evidence for a Truncated Mass Function?

    Full text link
    We have analyzed high-resolution, adaptive optics (AO) HK observations of the Arches cluster obtained with NAOS/CONICA. With a spatial resolution of 84 mas, the cluster center is uniquely resolved. From these data the present-day mass function (MF) of Arches is derived down to about 4 Msun. The integrated MF as well as the core and 2nd annulus MFs are consistent with a turn-over at 6-7 Msun. This turn-over indicates severe depletion of intermediate and low-mass stars in the Arches cluster, possibly caused by its evolution in the Galactic Center environment. The Arches MF represents the first resolved observation of a starburst cluster exhibiting a low-mass truncated MF. This finding has severe implications for stellar population synthesis modelling of extragalactic starbursts, the derivation of integrated properties such as the total mass of star clusters in dense environments, the survival of low-mass remnants from starburst populations, and chemical enrichment during starburst phases.Comment: aastex preprint, 14 pages, 4 figures, accepted by ApJ Letter

    Near-Infrared Detection and Characterization of the Exoplanet HD 95086 b with the Gemini Planet Imager

    Full text link
    HD 95086 is an intermediate-mass debris-disk-bearing star. VLT/NaCo 3.8μm3.8 \mu m observations revealed it hosts a 5±2MJup5\pm2 \mathrm{M}_{Jup} companion (HD 95086 b) at 56\simeq 56 AU. Follow-up observations at 1.66 and 2.18 μm\mu m yielded a null detection, suggesting extremely red colors for the planet and the need for deeper direct-imaging data. In this Letter, we report H- (1.7μm1.7 \mu m) and K1\mathrm{K}_1- (2.05μm2.05 \mu m) band detections of HD 95086 b from Gemini Planet Imager (GPI) commissioning observations taken by the GPI team. The planet position in both spectral channels is consistent with the NaCo measurements and we confirm it to be comoving. Our photometry yields colors of H-L'= 3.6±1.03.6\pm 1.0 mag and K1_1-L'=2.4±0.72.4\pm 0.7 mag, consistent with previously reported 5-σ\sigma upper limits in H and Ks. The photometry of HD 95086 b best matches that of 2M 1207 b and HR 8799 cde. Comparing its spectral energy distribution with the BT-SETTL and LESIA planet atmospheric models yields Teff_{\mathrm{eff}}\sim600-1500 K and log g\sim2.1-4.5. Hot-start evolutionary models yield M=5±25\pm2 MJup_{Jup}. Warm-start models reproduce the combined absolute fluxes of the object for M=4-14 MJup_{Jup} for a wide range of plausible initial conditions (Sinit_{init}=8-13 kB_{B}/baryon). The color-magnitude diagram location of HD 95086 b and its estimated Teff_{\mathrm{eff}} and log g suggest that the planet is a peculiar L-T transition object with an enhanced amount of photospheric dust.Comment: 4 pages, 4 figures, 3 tables, accepted on April, 15th, 201
    corecore