35 research outputs found
a versatile tool for the analysis and integrative visualization of DNA copy number variants
Background The analysis of DNA copy number variants (CNV) has increasing
impact in the field of genetic diagnostics and research. However, the
interpretation of CNV data derived from high resolution array CGH or NGS
platforms is complicated by the considerable variability of the human genome.
Therefore, tools for multidimensional data analysis and comparison of patient
cohorts are needed to assist in the discrimination of clinically relevant CNVs
from others. Results We developed GenomeCAT, a standalone Java application for
the analysis and integrative visualization of CNVs. GenomeCAT is composed of
three modules dedicated to the inspection of single cases, comparative
analysis of multidimensional data and group comparisons aiming at the
identification of recurrent aberrations in patients sharing the same
phenotype, respectively. Its flexible import options ease the comparative
analysis of own results derived from microarray or NGS platforms with data
from literature or public depositories. Multidimensional data obtained from
different experiment types can be merged into a common data matrix to enable
common visualization and analysis. All results are stored in the integrated
MySQL database, but can also be exported as tab delimited files for further
statistical calculations in external programs. Conclusions GenomeCAT offers a
broad spectrum of visualization and analysis tools that assist in the
evaluation of CNVs in the context of other experiment data and annotations.
The use of GenomeCAT does not require any specialized computer skills. The
various R packages implemented for data analysis are fully integrated into
GenomeCATs graphical user interface and the installation process is supported
by a wizard. The flexibility in terms of data import and export in combination
with the ability to create a common data matrix makes the program also well
suited as an interface between genomic data from heterogeneous sources and
external software tools. Due to the modular architecture the functionality of
GenomeCAT can be easily extended by further R packages or customized plug-ins
to meet future requirements
The CAT-ACT Beamline at ANKA: A new high energy X-ray spectroscopy facility for CATalysis and ACTinide research
A new hard X-ray beamline for CATalysis and ACTinide research has been built at the synchrotron radiation facility ANKA. The beamline design is dedicated to X-ray spectroscopy, including âflux hungryâ photon-in/photon-out and correlative techniques with a special infrastructure for radionuclide and catalysis research. The CAT-ACT beamline will help serve the growing need for high flux/hard X-ray spectroscopy in these communities. The design, the first spectra and the current status of this project are reported
Genome-Wide Analysis of Interchromosomal Interaction Probabilities Reveals Chained Translocations and Overrepresentation of Translocation Breakpoints in Genes in a Cutaneous T-Cell Lymphoma Cell Line
In classical models of tumorigenesis, the accumulation of tumor promoting chromosomal aberrations is described as a gradual process. Next-generation sequencing-based methods have recently revealed complex patterns of chromosomal aberrations, which are beyond explanation by these classical models of karyotypic evolution of tumor genomes. Thus, the term chromothripsis has been introduced to describe a phenomenon, where temporarily and spatially confined genomic instability results in dramatic chromosomal rearrangements limited to segments of one or a few chromosomes. Simultaneously arising and misrepaired DNA double-strand breaks are also the cause of another phenomenon called chromoplexy, which is characterized by the presence of chained translocations and interlinking deletion bridges involving several chromosomes. In this study, we demonstrate the genome-wide identification of chromosomal translocations based on the analysis of translocation-associated changes in spatial proximities of chromosome territories on the example of the cutaneous T-cell lymphoma cell line Se-Ax. We have used alterations of intra- and interchromosomal interaction probabilities as detected by genome-wide chromosome conformation capture (Hi-C) to infer the presence of translocations and to fine-map their breakpoints. The outcome of this analysis was subsequently compared to datasets on DNA copy number alterations and gene expression. The presence of chained translocations within the Se-Ax genome, partly connected by intervening deletion bridges, indicates a role of chromoplexy in the etiology of this cutaneous T-cell lymphoma. Notably, translocation breakpoints were significantly overrepresented in genes, which highlight gene-associated biological processes like transcription or other gene characteristics as a possible cause of the observed complex rearrangements. Given the relevance of chromosomal aberrations for basic and translational research, genome-wide high-resolution analysis of structural chromosomal aberrations will gain increasing importance
Usefulness of Published PCR Primers in Detecting Human Rhinovirus Infection
We conducted a preliminary comparison of the relative sensitivity of a cross-section of published human rhinovirus (HRV)âspecific PCR primer pairs, varying the oligonucleotides and annealing temperature. None of the pairs could detect all HRVs in 2 panels of genotyped clinical specimens; >1 PCR is required for accurate description of HRV epidemiology
Surveillance recommendations based on an exploratory analysis of respiratory syncytial virus reports derived from the European Influenza Surveillance System
BACKGROUND: Respiratory syncytial virus (RSV) is an important pathogen that can cause severe illness in infants and young children. In this study, we assessed whether data on RSV collected by the European Influenza Surveillance Scheme (EISS) could be used to build an RSV surveillance system in Europe. METHODS: Influenza and RSV data for the 2002â2003 winter season were analysed for England, France, the Netherlands and Scotland. Data from sentinel physician networks and other sources, mainly hospitals, were collected. Respiratory specimens were tested for influenza and RSV mainly by virus culture and polymerase chain reaction amplification. RESULTS: Data on RSV were entered timely into the EISS database. RSV contributed noticeably to influenza-like illness: in England sentinel RSV detections were common in all age groups, but particularly in young children with 20 (40.8%) of the total number of sentinel swabs testing positive for RSV. Scotland and France also reported the highest percentages of RSV detections in the 0â4 year age group, respectively 10.3% (N = 29) and 12.2% (N = 426). In the Netherlands, RSV was detected in one person aged over 65 years. CONCLUSION: We recommend that respiratory specimens collected in influenza surveillance are also tested systematically for RSV and emphasize the use of both community derived data and data from hospitals for RSV surveillance. RSV data from the EISS have been entered in a timely manner and we consider that the EISS model can be used to develop an RSV surveillance system equivalent to the influenza surveillance in Europe
A Very Large Number of GABAergic Neurons Are Activated in the Tuberal Hypothalamus during Paradoxical (REM) Sleep Hypersomnia
We recently discovered, using Fos immunostaining, that the tuberal and mammillary hypothalamus contain a massive population of neurons specifically activated during paradoxical sleep (PS) hypersomnia. We further showed that some of the activated neurons of the tuberal hypothalamus express the melanin concentrating hormone (MCH) neuropeptide and that icv injection of MCH induces a strong increase in PS quantity. However, the chemical nature of the majority of the neurons activated during PS had not been characterized. To determine whether these neurons are GABAergic, we combined in situ hybridization of GAD67 mRNA with immunohistochemical detection of Fos in control, PS deprived and PS hypersomniac rats. We found that 74% of the very large population of Fos-labeled neurons located in the tuberal hypothalamus after PS hypersomnia were GAD-positive. We further demonstrated combining MCH immunohistochemistry and GAD67 in situ hybridization that 85% of the MCH neurons were also GAD-positive. Finally, based on the number of Fos-ir/GAD+, Fos-ir/MCH+, and GAD+/MCH+ double-labeled neurons counted from three sets of double-staining, we uncovered that around 80% of the large number of the Fos-ir/GAD+ neurons located in the tuberal hypothalamus after PS hypersomnia do not contain MCH. Based on these and previous results, we propose that the non-MCH Fos/GABAergic neuronal population could be involved in PS induction and maintenance while the Fos/MCH/GABAergic neurons could be involved in the homeostatic regulation of PS. Further investigations will be needed to corroborate this original hypothesis
Genomic loss of the putative tumor suppressor gene E2A in human lymphoma
The transcription factor E2A is essential for lymphocyte development. In this study, we describe a recurrent E2A gene deletion in at least 70% of patients with SĂ©zary syndrome (SS), a subtype of T cell lymphoma. Loss of E2A results in enhanced proliferation and cell cycle progression via derepression of the protooncogene MYC and the cell cycle regulator CDK6. Furthermore, by examining the gene expression profile of SS cells after restoration of E2A expression, we identify several E2A-regulated genes that interfere with oncogenic signaling pathways, including the Ras pathway. Several of these genes are down-regulated or lost in primary SS tumor cells. These data demonstrate a tumor suppressor function of E2A in human lymphoid cells and could help to develop new treatment strategies for human lymphomas with altered E2A activity
The global abundance of tree palms
Aim Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location Tropical and subtropical moist forests. Time period Current. Major taxa studied Palms (Arecaceae). Methods We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., â„10 cm diameter at breast height) abundance relative to coâoccurring nonâpalm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of longâterm climate stability. Lifeâform diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many nonâtree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of aboveâground biomass, but the magnitude and direction of the effect require additional work. Conclusions Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests