458 research outputs found

    Do Tregitopes have the potential to impact the current treatment landscape of autoimmune diseases?

    Get PDF
    Current treatment of autoimmune disease usually involves the use of cytotoxic drugs or biologic agents that interfere with the activity of B cells, T cells or key cytokines, such as TNF, IL-1 and IL-6. On occasion, polyclonal immunoglobulin G (IgG), intravenous (IVIg) is used. The discovery of IgG- (and hence IVIg-) derived T regulatory (Treg) epitopes that trigger the expansion of Tregs in vitro and in vivo provides a novel explanation for the effect of IVIg. These IgG-derived Treg epitopes (also known as Tregitopes) appear to be effective on their own (in vivo, in autoimmune disease models) and when co-administered with a specific autoimmune disease antigen, contribute to antigen-specific tolerance induction. A description of Tregitopes and a brief discussion of their potential applications in autoimmune disease are provided here. Tregitope-based immunotherapy has the potential to modify the current autoimmune pharmacopeia

    Report from the field - Overview of the Sixth Annual Vaccine Renaissance Conference

    Get PDF
    The Sixth Annual Vaccine Renaissance Conference, hosted by the Institute for Immunology and Informatics (iCubed) at the University of Rhode Island (URI), took place on October 15–17, 2012. This conference provides a forum for the review of current progress in the discovery and development of vaccines, and creates an environment for the exchange of ideas. Dr. Joel McCleary opened the conference with a warning about the importance of preparing for well-defined biowarfare threats, including tularemia and Staphylococcal enterotoxin B. Following the keynote address, sessions explored biodefense and preparation for pandemic and biowarfare threats; vaccines for emerging and re-emerging neglected tropical diseases; animal vaccines and human health; and vaccine vectors and the human microbiome. In this issue of Human Vaccines and Immunotherapeutics, seven Vaccine Renaissance Conference speakers will showcase their work; here, we describe a few of the conference highlights

    Immunogenic Consensus Sequence T helper Epitopes for a Pan-Burkholderia Biodefense Vaccine

    Full text link

    Harnessing the power of genomics and immunoinformatics to produce improved vaccines

    Get PDF
    The role of cellular immunity as a mediator of protection against disease is gaining recognition, particularly with regard to the many pathogens for which we presently lack effective vaccines. As a result, there is an ever-increasing need to understand the T-cell populations induced by vaccination and, therefore, T-cell epitopes responsible for triggering their activation. Although the characterization and harnessing of cellular immunity for vaccine development is an active area of research interest, the field still needs to rigorously define T-cell epitope specificities, above all, on a genomic level. New immunoinformatic epitope mapping tools now make it possible to identify pathogen epitopes and perform comparisons against human and microbial genomic data sets. Such information will help to determine whether adaptive immune responses elicited by a vaccine are both pathogen-specific and protective, but not crossreactive against host or host-associated sequences that could jeopardize self-tolerance and/or human microbiome–host homeostasis. Here, we discuss advances in genomics and vaccine design and their relevance to the development of safer, more effective vaccines

    Emerging Vaccine Informatics

    Get PDF
    Vaccine informatics is an emerging research area that focuses on development and applications of bioinformatics methods that can be used to facilitate every aspect of the preclinical, clinical, and postlicensure vaccine enterprises. Many immunoinformatics algorithms and resources have been developed to predict T- and B-cell immune epitopes for epitope vaccine development and protective immunity analysis. Vaccine protein candidates are predictable in silico from genome sequences using reverse vaccinology. Systematic transcriptomics and proteomics gene expression analyses facilitate rational vaccine design and identification of gene responses that are correlates of protection in vivo. Mathematical simulations have been used to model host-pathogen interactions and improve vaccine production and vaccination protocols. Computational methods have also been used for development of immunization registries or immunization information systems, assessment of vaccine safety and efficacy, and immunization modeling. Computational literature mining and databases effectively process, mine, and store large amounts of vaccine literature and data. Vaccine Ontology (VO) has been initiated to integrate various vaccine data and support automated reasoning

    Tregitope: Immunomodulation Powerhouse

    Get PDF
    IVIG is frequently used in the ‘pre-conditioning’ regimens for higher risk transplants; its effects are attributed in part to induction of Tregs. We have identified regulatory T cell (Treg) epitopes, now known as Tregitopes, in IgG, the main component of intravenous immunoglobulin therapy (IVIg). Tregitopes provide one explanation for the expansion and activation of Treg cells following IVIg treatment. Tregitopes are peptides that exhibit high affinity binding to multiple human HLA Class II DR; they are conserved across IgG isotypes and mammalian species. In vitro and in vivo, for human PBMC and in animal models, Tregitopes activate Tregs. Studies to delineate the mechanism of action have shown that Tregitopes’ effects are very similar to IVIg in vitro. Here we demonstrate that Tregitopes induce Tregs to produce IL-10, leading to modulation of dendritic cell phenotype (down-regulation of Class II, CD80 and CD86 and up-regulation of ILT3), and describe the effects of Tregitopes in the ABM-TCR-transgenic skin transplantation model. The discovery of Tregitopes in IgG and other autologous proteins may contribute to improved understanding of the mechanism of action of IVIg and lead to the application of these powerful immunomodulators to improve transplantation success and suppress autoimmune disease, in the future

    Potential Application of Tregitopes as Immunomodulating Agents in Multiple Sclerosis

    Get PDF
    The induction of immunologic tolerance is an important clinical goal in autoimmunity. CD4+ regulatory T (Treg) cells, defined by the expression of the transcription factor forkhead box P3 (FoxP3), play a central role in the control of autoimmune responses. Quantitative and qualitative defects of Tregs have been postulated to contribute to failed immune regulation in multiple sclerosis (MS) and other autoimmune diseases. This paper highlights the potential uses of T regulatory cell epitopes (Tregitopes), natural Treg epitopes found to be contained in human immunoglobulins, as immunomodulating agents in MS. Tregitopes expand Treg cells and induce “adaptive Tregs” resulting in immunosuppression and, therefore, are being considered as a potential therapy for autoimmune diseases. We will compare Tregitopes versus intravenous immunoglobulin (IVIg) in the treatment of EAE with emphasis on the potential applications of Tregitope for the treatment of MS

    A Method for Individualizing the Prediction of Immunogenicity of Protein Vaccines and Biologic Therapeutics: Individualized T Cell Epitope Measure (iTEM)

    Get PDF
    The promise of pharmacogenomics depends on advancing predictive medicine. To address this need in the area of immunology, we developed the individualized T cell epitope measure (iTEM) tool to estimate an individual's T cell response to a protein antigen based on HLA binding predictions. In this study, we validated prospective iTEM predictions using data from in vitro and in vivo studies. We used a mathematical formula that converts DRB1* allele binding predictions generated by EpiMatrix, an epitope-mapping tool, into an allele-specific scoring system. We then demonstrated that iTEM can be used to define an HLA binding threshold above which immune response is likely and below which immune response is likely to be absent. iTEM's predictive power was strongest when the immune response is focused, such as in subunit vaccination and administration of protein therapeutics. iTEM may be a useful tool for clinical trial design and preclinical evaluation of vaccines and protein therapeutics
    corecore