194 research outputs found

    Satellite Imagery to Map Topsoil Organic Carbon Content over Cultivated Areas: An Overview

    Get PDF
    There is a need to update soil maps and monitor soil organic carbon (SOC) in the upper horizons or plough layer for enabling decision support and land management, while complying with several policies, especially those favoring soil carbon storage. This review paper is dedicated to the satellite-based spectral approaches for SOC assessment that have been achieved from several satellite sensors, study scales and geographical contexts in the past decade. Most approaches relying on pure spectral models have been carried out since 2019 and have dealt with temperate croplands in Europe, China and North America at the scale of small regions, of some hundreds of km(2): dry combustion and wet oxidation were the analytical determination methods used for 50% and 35% of the satellite-derived SOC studies, for which measured topsoil SOC contents mainly referred to mineral soils, typically cambisols and luvisols and to a lesser extent, regosols, leptosols, stagnosols and chernozems, with annual cropping systems with a SOC value of similar to 15 g.kg(-1) and a range of 30 g.kg(-1) in median. Most satellite-derived SOC spectral prediction models used limited preprocessing and were based on bare soil pixel retrieval after Normalized Difference Vegetation Index (NDVI) thresholding. About one third of these models used partial least squares regression (PLSR), while another third used random forest (RF), and the remaining included machine learning methods such as support vector machine (SVM). We did not find any studies either on deep learning methods or on all-performance evaluations and uncertainty analysis of spatial model predictions. Nevertheless, the literature examined here identifies satellite-based spectral information, especially derived under bare soil conditions, as an interesting approach that deserves further investigations. Future research includes considering the simultaneous analysis of imagery acquired at several dates i.e., temporal mosaicking, testing the influence of possible disturbing factors and mitigating their effects fusing mixed models incorporating non-spectral ancillary information

    Digital mapping of GlobalSoilMap soil properties at a broad scale: a review

    Get PDF
    Soils are essential for supporting food production and providing ecosystem services but are under pressure due to population growth, higher food demand, and land use competition. Because of the effort to ensure the sustainable use of soil resources, demand for current, updatable soil information capable of supporting decisions across scales is increasing. Digital soil mapping (DSM) addresses the drawbacks of conventional soil mapping and has been increasingly used for delivering soil information in a time- and cost-efficient manner with higher spatial resolution, better map accuracy, and quantified uncertainty estimates. We reviewed 244 articles published between January 2003 and July 2021 and then summarised the progress in broad-scale (spatial extent >10,000 km2) DSM, focusing on the 12 mandatory soil properties for GlobalSoilMap. We observed that DSM publications continued to increase exponentially; however, the majority (74.6%) focused on applications rather than methodology development. China, France, Australia, and the United States were the most active countries, and Africa and South America lacked country-based DSM products. Approximately 78% of articles focused on mapping soil organic matter/carbon content and soil organic carbon stocks because of their significant role in food security and climate regulation. Half the articles focused on soil information in topsoil only (<30 cm), and studies on deep soil (100–200 cm) were less represented (21.7%). Relief, organisms, and climate were the three most frequently used environmental covariates in DSM. Nonlinear models (i.e. machine learning) have been increasingly used in DSM for their capacity to manage complex interactions between soil information and environmental covariates. Soil pH was the best predicted soil property (average R2 of 0.60, 0.63, and 0.56 at 0–30, 30–100, and 100–200 cm). Other relatively well-predicted soil properties were clay, silt, sand, soil organic carbon (SOC), soil organic matter (SOM), SOC stocks, and bulk density, and coarse fragments and soil depth were poorly predicted (R2 < 0.28). In addition, decreasing model performance with deeper depth intervals was found for most soil properties. Further research should pursue rescuing legacy data, sampling new data guided by well-designed sampling schemas, collecting representative environmental covariates, improving the performance and interpretability of advanced spatial predictive models, relating performance indicators such as accuracy and precision to cost-benefit and risk assessment analysis for improving decision support; moving from static DSM to dynamic DSM; and providing high-quality, fine-resolution digital soil maps to address global challenges related to soil resources

    Cartoon

    Full text link
    cartoon de la page 1

    Dictionnaire de données DoneSol version 3.11

    Full text link
    auteur : InfoSolNational audienc

    Logo du projet GLADSOILMAP

    Full text link

    Guide de saisie des données dans DoneSol-web

    Full text link
    National audienc
    corecore