729 research outputs found
Fetal death after the introduction of COVID-19 mitigation measures in Sweden, Denmark and Norway: a registry-based study
It remains unclear whether the rate of fetal death has changed during the COVID-19 pandemic. We assessed the impact of COVID-19 mitigation measures on fetal death in Sweden (449,347 births), Denmark (290,857 pregnancies) and Norway (261,057 pregnancies) using robust population-based registry data. We used Cox regression to assess the impact of the implementation of pandemic mitigation measures on March 12th, 2020, on miscarriage (fetal loss before gestational week 22) and stillbirth (fetal loss after gestational week 22). A total of 11% of 551,914 pregnancies in Denmark and Norway ended in miscarriage, while the proportion of stillbirths among 937,174 births across the three countries was 0.3%. There was no difference in the risk of fetal death during the year following pandemic mitigation measures. For miscarriage, the combined hazard ratio (HR) for Norway and Denmark was 1.01 (95% CI 0.98, 1.03), and for stillbirth, the combined HR for all three countries was 0.99 (95% CI 0.89, 1.09). We observed a slightly decreased risk of miscarriage during the first 4 months, with an HR of 0.94 (95% CI 0.90, 0.99) after lockdown. In conclusion, the risk of fetal death did not change after the implementation of COVID-19 pandemic mitigation measures in the three Scandinavian countries
Preterm birth after the introduction of COVID-19 mitigation measures in Norway, Sweden, and Denmark: a registry-based difference-in-differences study.
BACKGROUND: Although some studies have reported a decrease in preterm birth following the start of the COVID-19 pandemic, the findings are inconsistent. OBJECTIVE: This study aimed to compare the incidences of preterm birth before and after the introduction of COVID-19 mitigation measures in Scandinavian countries using robust population-based registry data. STUDY DESIGN: This was a registry-based difference-in-differences study using births from January 2014 through December 2020 in Norway, Sweden, and Denmark. The changes in the preterm birth (<37 weeks) rates before and after the introduction of COVID-19 mitigation measures (set to March 12, 2020) were compared with the changes in preterm birth before and after March 12 from 2014 to 2019. The differences per 1000 births were calculated for 2-, 4-, 8-, 12-, and 16-week intervals before and after March 12. The secondary analyses included medically indicated preterm birth, spontaneous preterm birth, and very preterm (<32 weeks) birth. RESULTS: A total of 1,519,521 births were included in this study. During the study period, 5.6% of the births were preterm in Norway and Sweden, and 5.7% were preterm in Denmark. There was a seasonal variation in the incidence of preterm birth, with the highest incidence during winter. In all the 3 countries, there was a slight overall decline in preterm births from 2014 to 2020. There was no consistent evidence of a change in the preterm birth rates following the introduction of COVID-19 mitigation measures, with difference-in-differences estimates ranging from 3.7 per 1000 births (95% confidence interval, -3.8 to 11.1) for the first 2 weeks after March 12, 2020, to -1.8 per 1000 births (95% confidence interval, -4.6 to 1.1) in the 16 weeks after March 12, 2020. Similarly, there was no evidence of an impact on medically indicated preterm birth, spontaneous preterm birth, or very preterm birth. CONCLUSION: Using high-quality national data on births in 3 Scandinavian countries, each of which implemented different approaches to address the pandemic, there was no evidence of a decline in preterm births following the introduction of COVID-19 mitigation measures
Improving Information on Maternal Medication Use by Linking Prescription Data to Congenital Anomaly Registers: A EUROmediCAT Study
Research on associations between medication use during pregnancy and congenital anomalies is significative for assessing the safe use of a medicine in pregnancy. Congenital anomaly (CA) registries do not have optimal information on medicine exposure, in contrast to prescription databases. Linkage of prescription databases to the CA registries is a potentially effective method of obtaining accurate information on medicine use in pregnancies and the risk of congenital anomalies. We linked data from primary care and prescription databases to five European Surveillance of Congenital Anomalies (EUROCAT) CA registries. The linkage was evaluated by looking at linkage rate, characteristics of linked and non-linked cases, first trimester exposure rates for six groups of medicines according to the prescription data and information on medication use registered in the CA databases, and agreement of exposure. Of the 52,619 cases registered in the CA databases, 26,552 could be linked. The linkage rate varied between registries over time and by type of birth. The first trimester exposure rates and the agreements between the databases varied for the different medicine groups. Information on anti-epileptic drugs and insulins and analogue medicine use recorded by CA registries was of good quality. For selective serotonin reuptake inhibitors, anti-asthmatics, antibacterials for systemic use, and gonadotropins and other ovulation stimulants, the recorded information was less complete. Linkage of primary care or prescription databases to CA registries improved the quality of information on maternal use of medicines in pregnancy, especially for medicine groups that are less fully registered in CA registries
Improving Information on Maternal Medication Use by Linking Prescription Data to Congenital Anomaly Registers: A EUROmediCAT Study
Abstract Introduction Research on associations between medication use during pregnancy and congenital anomalies is significative for assessing the safe use of a medicine in pregnancy. Congenital anomaly (CA) registries do not have optimal information on medicine exposure, in contrast to prescription databases. Linkage of prescription databases to the CA registries is a potentially effective method of obtaining accurate information on medicine use in pregnancies and the risk of congenital anomalies. Methods We linked data from primary care and prescription databases to five European Surveillance of Congenital Anomalies (EUROCAT) CA registries. The linkage was evaluated by looking at linkage rate, characteristics of linked and non-linked cases, first trimester exposure rates for six groups of medicines according to the prescription data and information on medication use registered in the CA databases, and agreement of exposure. Results Of the 52,619 cases registered in the CA databases, 26,552 could be linked. The linkage rate varied between registries over time and by type of birth. The first trimester exposure rates and the agreements between the databases varied for the different medicine groups. Information on anti-epileptic drugs and insulins and analogue medicine use recorded by CA registries was of good quality. For selective serotonin reuptake inhibitors, antiasthmatics, antibacterials for systemic use, and gonadotropins and other ovulation stimulants, the recorded information was less complete. A presentation was given at the 54th Annual Meeting of the Teratology Society in Washington, USA, 28 June-2 July 2014. Key Points Linkage of primary care or prescription databases to congenital anomaly (CA) registries improved the quality of information on maternal use of medicines in pregnancy. The quality of information improved particularly for medicine groups that are less fully registered in CA registries, such as selective serotonin reuptake inhibitors, anti-asthmatics, antibacterials for systemic use, and gonadotropins and other ovulation stimulants
BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers
Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers.
Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided.
Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed.
Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations
Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers
Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates.
Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS.
Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 x 10(53)). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 x 10(-20)). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS.
Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management
Transcriptional regulatory program in wild-type and retinoblastoma gene-deficient mouse embryonic fibroblasts during adipocyte differentiation
<p>Abstract</p> <p>Background</p> <p>Although many molecular regulators of adipogenesis have been identified a comprehensive catalogue of components is still missing. Recent studies showed that the retinoblastoma protein (pRb) was expressed in the cell cycle and late cellular differentiation phase during adipogenesis. To investigate this dual role of pRb in the early and late stages of adipogenesis we used microarrays to perform a comprehensive systems-level analysis of the common transcriptional program of the classic 3T3-L1 preadipocyte cell line, wild-type mouse embryonic fibroblasts (MEFs), and retinoblastoma gene-deficient MEFs (Rb-/- MEFs).</p> <p>Findings</p> <p>Comparative analysis of the expression profiles of 3T3-L1 cells and wild-type MEFs revealed genes involved specifically in early regulation of the adipocyte differentiation as well as secreted factors and signaling molecules regulating the later phase of differentiation. In an attempt to identify transcription factors regulating adipogenesis, bioinformatics analysis of the promoters of coordinately and highly expressed genes was performed. We were able to identify a number of high-confidence target genes for follow-up experimental studies. Additionally, combination of experimental data and computational analyses pinpointed a feedback-loop between Pparg and Foxo1.</p> <p>To analyze the effects of the retinoblastoma protein at the transcriptional level we chose a perturbated system (Rb-/- MEFs) for comparison to the transcriptional program of wild-type MEFs. Gene ontology analysis of 64 deregulated genes showed that the Rb-/- MEF model exhibits a brown(-like) adipocyte phenotype. Additionally, the analysis results indicate a different or additional role for pRb family member involvement in the lineage commitment.</p> <p>Conclusion</p> <p>In this study a number of commonly modulated genes during adipogenesis in 3T3-L1 cells and MEFs, potential transcriptional regulation mechanisms, and differentially regulated targets during adipocyte differentiation of Rb-/- MEFs could be identified. These data and the analysis provide a starting point for further experimental studies to identify target genes for pharmacological intervention and ultimately remodeling of white adipose tissue into brown adipose tissue.</p
New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.
Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
- …