424 research outputs found

    Photoreductive dissolution of ferrihydrite by methanesulfinic acid: Evidence of a direct link between dimethylsulfide and iron-bioavailability

    Get PDF
    Within open‐ocean regions where excess macronutrients are present, phytoplankton growth is limited by the bioavailability of iron supplied to these areas primarily within atmospheric aerosols of crustal origin. However, processes that control the abundance of biologically accessible iron in these aerosols are largely unknown. Here we show that dissolution of ferrihydrite, a surrogate iron(oxy)hydroxide phase found in atmospheric waters, is enhanced in the presence of methanesulfinic acid (MSIA, CH3SO2H, a dimethylsulfide (DMS) oxidation intermediate) in laboratory irradiation experiments with aqueous suspensions that simulate marine aerosol particles. The increased release of soluble Fe(II) is attributed to a species specific and direct photochemical reduction rather than a proton‐promoted effect, and suggests an efficient mechanism by which iron‐starved phytoplankton can actively increase aerosol iron‐bioavailability by increasing DMS emissions

    Chemical characterization of ambient aerosol collected during the northeast monsoon season over the Arabian Sea: Labile-Fe(II) and other trace metals

    Get PDF
    Ambient aerosol samples were collected over the Arabian Sea during the month of March of 1997, aboard the German R/V Sonne, as part of the German Joint Global Ocean Flux Study (JGOFS) project. This is the third study in a series of analogous measurements taken over the Arabian Sea during different seasons of the monsoon. Dichotomous high‐volume collector samples were analyzed for ferrous iron immediately after collection, while trace metals, anions, and cations were determined upon return to the laboratory. The main crustal component was geochemically well represented by the average crustal composition and amounted to 5.94 ± 3.08 ÎŒg m−3. An additional crustal constituent of clay‐like character, rich in water‐soluble Ca and Mg, was seen in the fine fraction in air masses of Arabian origin. Total ferrous iron concentrations varied from 3.9 to 17.2 ng m−3 and averaged 9.8 ± 3.4 ng m−3, with 87.2% of Fe(II) present in the fine aerosol fraction. Fe(II) concentrations accounted for on average 1.3 ± 0.5% of the total Fe. While ferrous iron in the coarse fraction appeared to be correlated with the main crustal component, the fine Fe(II) fraction exhibited a more complex behavior. The anthropogenic contribution to the aerosol, as traced by Pb, Zn, and some anions and cations, was found to be considerably larger, especially during the first 10 days of this cruise, than in previously collected samples from the inter‐monsoon and southwest monsoon of 1995

    Geographic classification of U.S. Washington State wines using elemental and water isotope composition

    Get PDF
    Wine fraud leaves wineries vulnerable to damage in reputation and potential lost revenue. To reduce this risk for wines from Washington State (WA), USA, advanced analytical instrumentation and statistical methods were employed to geographically classify 133 wines from 4 major wine producing regions, including 70 wines from WA. Analyses of 37 elements and 2 water isotopes were performed with Triple Quadrupole Inductively Coupled Plasma Mass Spectrometry and Cavity Ring-Down Spectroscopy, respectively. Linear discriminant analysis resulted in 96.2% discrimination, achieved with 11 parameters (Mn, Zn, Pb, Ni, As, D/H, La, Ce, Si, Zr and Sr) that were linearly combined into 3 functions. WA wines were uniquely distinguished in large part with low D/H ratios and Mn concentrations derived from the isotopically light precipitation and volcanic loess soils encountered in this region, respectively. This study is the first of its kind to focus on the authentication of WA wines

    Chemical characterization of ambient aerosol collected during the southwest monsoon and intermonsoon seasons over the Arabian Sea: Anions and cations

    Get PDF
    Ambient aerosol samples were collected over the northern Indian Ocean during two 1 month-long research cruises (German R/V Meteor) that took place during the intermonsoon (May) and SW monsoon (July/August) of 1995. A high volume and two small volume collectors were used to collect samples, which were subsequently analyzed for ferrous iron, 32 elements, and anions and cations. The present paper focuses on the bulk aerosol material, the ions, while utilizing some of the trace metal data that were presented in more detail in our previous paper [Siefert et al., 1999]. Data are analyzed and interpreted with the aid of principal component and multiple linear regression analyses. Intermonsoon samples were strongly influenced by continental material, both of crustal and anthropogenic origin. The crustal component (24.5±13% of the total suspended particulate mass (TSP), 6.0±4.4 ÎŒg m^(−3)) contained 3.2% gypsum (CaSO_4). While more than half of the TSP (21.2±9.6 ÎŒg m^(−3)) during the SW monsoon was sea-salt-derived due to the strong winds prevailing during this season, only 1.7±1.1% (0.7±0.4 ÎŒg m^(−3)) was found to be of crustal origin. Sulfate (SO_4^(2−)) sources were determined and quantified with linear regression analyses utilizing specific tracers for the independent variables. Lead (Pb) was found to be a more reliable surrogate for anthropogenic SO_4^(2−) compared to nitrate (NO_3^−) during the relatively polluted intermonsoon. Soluble calcium (Ca^(2+)) served as the tracer for gypsum, and methane sulfonate (MSA) served as the tracer for biogenically derived SO_4^(2−) during both seasons. On the basis of this analysis, 75% of the non-sea-salt sulfate (NSS-SO_4^(2−)) (0.8±0.2 ÎŒg m^(−3), representing ∌2.4% of TSP) was found to be of biogenic origin during the SW monsoon with the remaining 25% of anthropogenic origin. During the intermonsoon, NSS-SO_4^(2−) accounted for 2.1±1.2 ÎŒg m^(−3) (∌9.2% of TSP) and had a composition that was 65% anthropogenic, 21% biogenic, and 14% gypsum-derived. Linear regression analyses revealed that the bio-SO_4^(2−)/MSA weight ratios appear to be consistent with the temperature dependence proposed by Hynes et al. [1986]. In this case the yield of SO_4^(2−) increased relative to MSA with an increase in temperature. Three samples during the SW monsoon, near the coast of Oman, showed lower temperatures, due to coastal upwelling, than the rest of the samples; at 24°C the bio-SO_4^(2−)/MSA weight ratio was 6.8±0.5. The remainder of the SW monsoon samples were collected at an average temperature of 27.2°C, for which the bio-SO_4^(2−)/MSA weight ratio was 13.5±4.4. At an average temperature of 28.9°C during the intermonsoon, sampling gave a ratio of 17.7±4.8. These observations indicate a temperature dependence factor between 24° and 29°C of 2.2 (i.e., a 2.2 increase in the ratio of bio-SO_4^(2−)/MSA with every degree temperature increase). Cl− deficits determined during both seasons appear to indicate that different mechanisms may govern the observed depletion of Cl− in each season

    Chemical composition of aerosols collected over the tropical North Atlantic Ocean

    Get PDF
    Ambient aerosol samples were collected over the tropical northern Atlantic Ocean during the month of April 1996 onboard the R/V Seward Johnson. Dichotomous high-volume collector samples were analyzed for ferrous iron immediately after collection, while trace metals, anions, and cations were determined upon return to the laboratory. Data are analyzed with the aid of enrichment factor, principal component, and weighted multiple linear regression analyses. Average mineral aerosol concentrations amounted to 19.3±16.4 ÎŒg m^(−3) whereby the chemical characteristics and air mass back trajectories indicated the dust to be of a typical shale composition and Saharan origin. Calcite accounted for 3.0 and 7.9% of the mineral aerosol during the first and second halves of the cruise, respectively. Total iron concentrations (averaging 0.84±0.61 ÎŒg m^(−3)) are crustally derived, of which 0.51±0.56% is readily released as Fe(II). Eighty-six percent of this Fe(II) is present in the fine (<3 ÎŒm diameter) aerosol fraction and correlates with NSS-SO_4^(2−) and oxalate. Approximately 23% of the measured NSS-SO_4^(2−) in both size fractions appears to be biogenically derived, and the rest is of anthropogenic nature. Biogenic SO_4^(2−) /methanesulfonic acid (MSA) ratios could not be easily extracted by employing a multiple linear regression analysis analogous to that of Johansen et al. [1999], possibly due to the varying characteristics of the aerosol chemistry and air temperature during the cruise. Because of the presence of anthropogenic SO_4^(2−), the non-sea-salt (NSS)- SO_4^(2−)/MSA ratio, 37.4±6.4, is elevated over what would be expected if the NSS - SO_4^(2−) were purely biogenic. Cl^− depletion is seen in all samples and averages 18.3±9.1%. The release of Cl from the aerosol phase appears to occur through acid displacement reactions with primarily HNO_3 in the coarse and H_2SO_4 in the fine fraction

    Chemical characterization of ambient aerosol collected during the southwest monsoon and intermonsoon seasons over the Arabian Sea: Labile-Fe(II) and other trace metals

    Get PDF
    Atmospheric deposition of iron (Fe) to certain regions of the oceans is an important nutrient source of Fe to the biota, and the ability of the biota to uptake Fe is dependent on the speciation of the Fe. Therefore understanding the speciation of Fe in the atmosphere is critical to understanding the role of Fe as a nutrient source in surface ocean waters. Labile ferrous iron (Fe(II)) concentrations as well as total concentrations for Fe and other important trace metals, cations, and anions were determined over the Arabian Sea for two nonconsecutive months during 1995. Ambient aerosol samples were collected during the Indian Ocean intermonsoon and southwest monsoon seasons over the Arabian Sea. Sampling took place aboard the German research vessel Meteor in the months of May (leg M32/3; intermonsoon) and July/August (leg M32/5; southwest monsoon). Both cruise tracks followed the 65th east meridian, traveling for 30 days each (from north to south during leg M32/3 and from south to north during leg M32/5). A high-volume dichotomous virtual impactor with an aerodynamic cutoff size of 3 ÎŒm was used to collect the fine and coarse aerosol fractions for metal analysis. A low volume collector was used to collect aerosol samples for anion and cation analysis. The analysis for labile-Fe(II) was done immediately after sample collection to minimize any possible Fe redox reactions which might occur during sample storage. The analytical procedure involved filter extraction in a formate/formic acid buffered solution at pH 4.2 followed by colorimetric quantification of soluble Fe(II). Metals, anions, and cations were analyzed after the cruise. Total atmospheric aqueous-labile-Fe(II) concentrations during the intermonsoon were between 4.75 and 80%) was present in the fine fraction (<3.0 ÎŒm). During the southwest monsoon, atmospheric aqueous-labile-Fe(II) concentrations were consistently below the detection limit (<0.34 to <0.089 ng m^(−3), depending on the volume of air sampled). Air mass back trajectories (5 day, three dimensional) showed that air masses sampled during the southwest monsoon had advected over the open Indian Ocean, while air masses sampled during the intermonsoon had advected over northeast Africa, the Saudi Arabian peninsula, and southern Asia. These calculations were consistent with the results of the statistical analysis performed on the data set which showed that the variance due to crustal species during the intermonsoon samples was greater than the variance due to crustal species during the southwest monsoon. The factor scores for the crustal components were also greater when the back trajectories had advected over the nearby continental masses. Principal component analysis was also performed with the intermonsoon samples where aqueous labile Fe(II) was above the detection limit. Aqueous labile Fe(II) did not correlate well with other species indicating possible atmospheric processing of the iron during advection

    The serotonin transporter promotes a pathological estrogen metabolic pathway in pulmonary hypertension via cytochrome P450 1B1 pulmonary circulation

    Get PDF
    Pulmonary arterial hypertension (PAH) is a devastating vasculopathy that predominates in women and has been associated with dysregulated estrogen and serotonin signaling. Overexpression of the serotonin transporter (SERT+) in mice results in an estrogen-dependent development of pulmonary hypertension (PH). Estrogen metabolism by cytochrome P450 1B1 (CYP1B1) contributes to the pathogenesis of PAH, and serotonin can increase CYP1B1 expression in human pulmonary arterial smooth muscle cells (hPASMCs). We hypothesized that an increase in intracellular serotonin via increased SERT expression may dysregulate estrogen metabolism via CYP1B1 to facilitate PAH. Consistent with this hypothesis, we found elevated lung CYP1B1 protein expression in female SERT+ mice accompanied by PH, which was attenuated by the CYP1B1 inhibitor 2,3',4,5'-tetramethoxystilbene (TMS). Lungs from female SERT+ mice demonstrated an increase in oxidative stress that was marked by the expression of 8-hydroxyguanosine; however, this was unaffected by CYP1B1 inhibition. SERT expression was increased in monocrotaline-induced PH in female rats; however, TMS did not reverse PH in monocrotaline-treated rats but prolonged survival. Stimulation of hPASMCs with the CYP1B1 metabolite 16α-hydroxyestrone increased cellular proliferation, which was attenuated by an inhibitor (MPP) of estrogen receptor alpha (ERα) and a specific ERα antibody. Thus, increased intracellular serotonin caused by increased SERT expression may contribute to PAH pathobiology by dysregulation of estrogen metabolic pathways via increased CYP1B1 activity. This promotes PASMC proliferation by the formation of pathogenic metabolites of estrogen that mediate their effects via ERα. Our studies indicate that targeting this pathway in PAH may provide a promising antiproliferative therapeutic strategy

    Bovine CD2(-)/NKp46(+ )cells are fully functional natural killer cells with a high activation status

    Get PDF
    BACKGROUND: Natural killer (NK) cells in the cow have been elusive due to the lack of specific NK cell markers, and various criteria including a CD3(-)/CD2(+ )phenotype have been used to identify such cells. The recent characterization of the NK-specific NKp46 receptor has allowed a more precise definition of bovine NK cells. NK cells are known as a heterogeneous cell group, and we here report the first functional study of bovine NK cell subsets, based on the expression of CD2. RESULTS: Bovine CD2(- )NK cells, a minor subset in blood, proliferated more rapidly in the presence of IL-2, dominating the cultures after a few days. Grown separately with IL-2, CD2(- )and CD2(+ )NK cell subsets did not change CD2 expression for at least two weeks. In blood, CD2(- )NK cells showed a higher expression of CD44 and CD25, consistent with a high activation status. A higher proportion of CD2(- )NK cells had intracellular interferon-gamma in the cytoplasm in response to IL-2 and IL-12 stimulation, and the CD2(- )subset secreted more interferon-gamma when cultured separately. Cytotoxic capacity was similar in both subsets, and both carried transcripts for the NK cell receptors KIR, CD16, CD94 and KLRJ. Ligation by one out of two tested anti-CD2 monoclonal antibodies could trigger interferon-gamma production from NK cells, but neither of them could alter cytotoxicity. CONCLUSION: These results provide evidence that bovine CD2(- )as well as CD2(+ )cells of the NKp46(+ )phenotype are fully functional NK cells, the CD2(- )subset showing signs of being more activated in the circulation

    miR-125b induces cellular senescence in malignant melanoma

    Get PDF
    BACKGROUND: Micro RNAs (miRs) have emerged as key regulators during oncogenesis. They have been found to regulate cell proliferation, differentiation, and apoptosis. Mir-125b has been identified as an oncomir in various forms of tumours, but we have previously proposed that miR-125b is a suppressor of lymph node metastasis in cutaneous malignant melanoma. Our goal was therefore to further examine this theory. METHODS: We used in-situ-hybridization to visualise miR-125b expression in primary tumours and in lymph node metastasis. Then using a miRVector plasmid containing a miR-125b-1 insert we transfected melanoma cell line Mel-Juso and then investigated the effect of the presence of a stable overexpression of miR-125b on growth by western blotting, flow cytometry and ÎČ-galactosidase staining. The tumourogenicity of the transfected cells was tested using a murine model and the tumours were further examined with in-situ-hybridization. RESULTS: In primary human tumours and in lymph node metastases increased expression of miR-125b was found in single, large tumour cells with abundant cytoplasm. A stable overexpression of miR-125b in human melanoma cell line Mel-Juso resulted in a G0/G1 cell cycle block and emergence of large cells expressing senescence markers: senescence-associated beta-galactosidase, p21, p27 and p53. Mel-Juso cells overexpressing miR-125b were tumourigenic in mice, but the tumours exhibited higher level of cell senescence and decreased expression of proliferation markers, cyclin D1 and Ki67 than the control tumours. CONCLUSIONS: Our results confirm the theory that miR-125b functions as a tumour supressor in cutaneous malignant melanoma by regulating cellular senescence, which is one of the central mechanisms protecting against the development and progression of malignant melanoma

    Protocol for ADDITION-PRO: a longitudinal cohort study of the cardiovascular experience of individuals at high risk for diabetes recruited from Danish primary care.

    Get PDF
    BACKGROUND: Screening programmes for type 2 diabetes inevitably find more individuals at high risk for diabetes than people with undiagnosed prevalent disease. While well established guidelines for the treatment of diabetes exist, less is known about treatment or prevention strategies for individuals found at high risk following screening. In order to make better use of the opportunities for primary prevention of diabetes and its complications among this high risk group, it is important to quantify diabetes progression rates and to examine the development of early markers of cardiovascular disease and microvascular diabetic complications. We also require a better understanding of the mechanisms that underlie and drive early changes in cardiometabolic physiology. The ADDITION-PRO study was designed to address these issues among individuals at different levels of diabetes risk recruited from Danish primary care. METHODS/DESIGN: ADDITION-PRO is a population-based, longitudinal cohort study of individuals at high risk for diabetes. 16,136 eligible individuals were identified at high risk following participation in a stepwise screening programme in Danish general practice between 2001 and 2006. All individuals with impaired glucose regulation at screening, those who developed diabetes following screening, and a random sub-sample of those at lower levels of diabetes risk were invited to attend a follow-up health assessment in 2009-2011 (n=4,188), of whom 2,082 (50%) attended. The health assessment included detailed measurement of anthropometry, body composition, biochemistry, physical activity and cardiovascular risk factors including aortic stiffness and central blood pressure. All ADDITION-PRO participants are being followed for incident cardiovascular disease and death. DISCUSSION: The ADDITION-PRO study is designed to increase understanding of cardiovascular risk and its underlying mechanisms among individuals at high risk of diabetes. Key features of this study include (i) a carefully characterised cohort at different levels of diabetes risk; (ii) detailed measurement of cardiovascular and metabolic risk factors; (iii) objective measurement of physical activity behaviour; and (iv) long-term follow-up of hard clinical outcomes including mortality and cardiovascular disease. Results will inform policy recommendations concerning cardiovascular risk reduction and treatment among individuals at high risk for diabetes. The detailed phenotyping of this cohort will also allow a number of research questions concerning early changes in cardiometabolic physiology to be addressed.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    • 

    corecore