37 research outputs found

    Possible Evidence for Radial Flow of Heavy Mesons in d+Au Collisions

    Get PDF
    Recent measurements of particle correlations and the spectra of hadrons at both RHIC and the LHC are suggestive of hydrodynamic behavior in very small collision systems (p+Pb, d+Au and p+p collisions). The measurements are both qualitatively and quantitatively similar to what is seen in central heavy ion collisions where low viscosity hot nuclear matter is formed. While light quarks and gluons are thought to make up the bulk matter, one of the most surprising results in heavy ion collisions is that charm quarks also have a large v2v_2, suggesting that they too participate in the matter. Measurements of the transverse momentum spectra of electrons from the decay of DD and BB mesons in d+Au show an enhancement in central collisions relative to p+p. We employ the blast-wave model to determine if the flow of heavy quarks in d+Au and p+Pb data is able to explain the enhancement observed in the data. We find a reasonable description of the data with blast-wave parameters extracted from fits to the light hadron spectra, suggesting hydrodynamics as a possible explanation.Comment: final published versio

    Higher-twist contributions to large pT hadron production in hadronic collisions

    Full text link
    The scaling behavior of large-pT hadron production in hadronic collisions is investigated. A significant deviation from the NLO QCD predictions is reported, especially at high values of xT=2pT/sqrt(s). In contrast, the prompt photon and jet production data prove in agreement with leading-twist expectations. These results are interpreted as coming from a non-negligible contribution of higher-twist processes, where the hadron is produced directly in the hard subprocess. Predictions for scaling exponents at RHIC are successfully compared to PHENIX preliminary measurements. We suggest to trigger on isolated large-pT hadron production to enhance higher-twist processes, and point that the use of isolated hadrons as a signal for new physics at colliders can be affected by the presence of direct hadron production processes.Comment: 4 pages, 2 figures. Talk given at the 45th Rencontres de Moriond QCD and High Energy Interactions, La Thuile, Italy, 13-20 March 201

    Correlations of Electrons from Heavy Flavor Decay with Hadrons in Au+Au and p+p Collisions

    Full text link
    Measurements of electrons from the decay of open-heavy flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled p+p collisions. These measurements indicate that charm and bottom quarks interact with the hot-dense matter produced in heavy-ion collisions much more than expected. Here we extend these studies to two-particle correlations where one particle is an electron from the decay of a heavy-flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interactions between heavy quarks and the matter, such as whether the modifcation of the away-side-jet shape seen in hadron-hadron correlations is present when the trigger particle is from heavy-meson decay and whether the overall level of away-side-jet suppression is consistent. We statistically subtract correlations of electrons arising from background sources from the inclusive electron-hadron correlations and obtain two-particle azimuthal correlations at sNN\sqrt{s_{NN}} =200 GeV between electrons from heavy-flavor decay with charged hadrons in p+p and also first results in Au+Au collisions. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to p+p collisions.Comment: talk given at Winter Workshop in Nuclear Dynamics 201

    Higher-Twist Dynamics in Large Transverse Momentum Hadron Production

    Full text link
    A scaling law analysis of the world data on inclusive large-pT hadron production in hadronic collisions is carried out. A significant deviation from leading-twist perturbative QCD predictions at next-to-leading order is reported. The observed discrepancy is largest at high values of xT=2pT/sqrt(s). In contrast, the production of prompt photons and jets exhibits the scaling behavior which is close to the conformal limit, in agreement with the leading-twist expectation. These results bring evidence for a non-negligible contribution of higher-twist processes in large-pT hadron production in hadronic collisions, where the hadron is produced directly in the hard subprocess rather than by gluon or quark jet fragmentation. Predictions for scaling exponents at RHIC and LHC are given, and it is suggested to trigger the isolated large-pT hadron production to enhance higher-twist processes.Comment: 5 pages, 4 figures. Extended introduction, additional reference

    Jet-Medium Interactions with Identified Particles

    Full text link
    Identified particles have long been of great interest at RHIC in large part because of the baryon/meson differences observed at intermediate pTp_T and the implications for hadronization via quark coalescence. With recent high statistics data identified particles are also now central to understanding the details of the jet-medium interactions and energy loss and hadron formation at intermediate and high pTp_T. In particular, high pTp_T identified particle spectra along with two-particle correlations triggered with direct photons, neutral pions or electrons from heavy flavor decay with hadrons can provide information about how medium modifications to jet fragmentation depend on parton type. I will review recent results with identified particles both in heavy ion systems and the reference measurements in p+p collisions.Comment: Proceedings for Quark Matter 2009, Knoxville T

    A New Phase of Matter: Quark-Gluon Plasma Beyond the Hagedorn Critical Temperature

    Get PDF
    I retrace the developments from Hagedorn's concept of a limiting temperature for hadronic matter to the discovery and characterization of the quark-gluon plasma as a new state of matter. My recollections begin with the transformation more than 30 years ago of Hagedorn's original concept into its modern interpretation as the "critical" temperature separating the hadron gas and quark-gluon plasma phases of strongly interacting matter. This was followed by the realization that the QCD phase transformation could be studied experimentally in high-energy nuclear collisions. I describe here my personal effort to help develop the strangeness experimental signatures of quark and gluon deconfinement and recall how the experimental program proceeded soon to investigate this idea, at first at the SPS, then at RHIC, and finally at LHC. As it is often the case, the experiment finds more than theory predicts, and I highlight the discovery of the "perfectly" liquid quark-gluon plasma at RHIC. I conclude with an outline of future opportunities, especially the search for a critical point in the QCD phase diagram.Comment: To appear in {\em Melting Hadrons, Boiling Quarks} by Rolf Hagedorn and Johan Rafelski (editor), Springer Publishers, 2015 (open access
    corecore