20 research outputs found
Variational convergences of dual energy functionals for elastic materials with a ε thin strong inclusion
International audienceWe give a new derivation, based on the complementary energy formulation, of a simplified model for a multi-structure made up of two anisotropic hyper-elastic bodies connected by a thin strong material layer. The model is obtained by identifying the Mosco limit of the stored complementary energy functional when the thickness is of order ε and the stiffness of order 1/ε where ε is a positive real adimensional parameter. In order to prove the existence of the displacement associated with the stress we use a suitable weak version of the Saint-Venant compatibility condition also known as Donati's theorem
Jonction forte entre deux solides : modèle simplifié et algorithme de résolution
Nous étudions un problème modèle non classique de transmission décrivant une multi-structure composée de deux solides reliés par une jonction forte. En utilisant une méthode de décomposition de domaines, le problème se ramène à une équation définie sur l'interface. Dans le cas thermique, cette équation est de la forme (I+G)g=F. On montre que les propriétés de G entraînent la convergence q-superlinéaire de l'algorithme GMRES
Modélisations mathématiques d'un multi-matériau
My researches concern the modeling of a structure made of two bodies Ω+ and Ω− joined by a very rigid layer Bε of thickness ε. I have considered the following situations. i) The bodies Ω+, Ω− and Bε are anisotropic linear elastic. Ω+ and Ω− have a rigidity of same order (O(1)) while that in Bε is of order 1/ε . In [1], the limit behavior as ε goes to 0 has been obtained by weak and strong convergence of the displacement field in an L2-Sobolev space framework. I have also considered in [1] a non linear "natural" extension of the quadratic case to the Lp situation (1 < p < +infty), the limit being obtained in the framework of Γ-convergence. ii) In [2], inspired by some results of Caillerie [3] and Chapelle-Ferent [4], have been interested in the case when the behavior of Bε is that of a plate-like or a shell-like structure. In the isotropic linear elasticity setting, we have considered two situations : when the rigidity in the thin layer is of order 1/ε and when the rigidity is of order 1/ε^3 . When the rigidity is of order 1/ε , the surface energy in the limit problems corresponds respectively to the membranal energy of a Kirchhoff-Love plate, and to the membranal energy of shell. When the rigidity is of order 1/ε^3 , we recover the flexural energy of a Kirchhoff-Love plate in the first case and that of a shell in the second one. iii) When the material in the thin layer can undergo reversible solid/solid phase transformations (for example, austenite and martensite phases in a metal alloy), the elastic density of Bε entails a multi-well structure which is not taken into account in the classical model obtained by Γ-convergence in Sobolev spaces. For this reason, the stored strain energy in Bε is rewritten in terms of Young measure and a new model is obtained where the elastic energy is a bi-functional of pairs of displacement/Young measure [5]. The classical stored strain energy of the previous model is recovered as to be the marginal map of this bi-functional when the Young measure is regarded as an internal state variable. iv) A more dificult situation arises when the thin layer Bε has a plastic behavior and Ω+ and Ω−are linearly elastic. In order to model this situation, I have considered the case when Bε behaves as a Norton-Hoff material with growth p, 1 < p < 2, and identied the Γ-limit behavior when ε goes to 0. Then, to obtain the plastic behavior, it has been studied the Γ-convergence when p goes to 1. Gradients displacement fields in the layer are then measures with matrix values [7]. v) From a numerical point of view, I have proposed in the scalar case, to solve the problem with a domain decomposition method involving GMRES algorithm [8], [9], [10]. Moreover, the limit model obtained in iv) when 1 < p < 2, for p close enough to 1, can be considered as a regular variational approximation of this model providing a numerical scheme. 1. A-L. Bessoud, F. Krasucki, G. Michaille. Multi materials with strong interface : variational modelings. Asympto. Anal. 61 (2009) no. 1, 1-19. 2. A-L. Bessoud, F. Krasucki., M. Serpilli Plate-like and shell-like inclusions with high rigidity. C. R. Acad. Sci. Paris, Ser. I. 346 (2008) 697702. 3. D. Caillerie. The Effect of a Thin Inclusion of High Rigidity in an Elastic Body. Math. Meth. in the Appl. Sci. 2 (1980), 251-270. 4. D. Chapelle, A. Ferent. Modeling of the Inclusion of a Reinforcing Sheet whithin a 3D Medium. Mathematical Models and Methods in Applied Sciences. 13 (2002), 573-595. 5. A-L. Bessoud, F. Krasucki, G. Michaille. A relaxation procedure for bifunctionals of displacement-Young measure state variables : a model of multi-material with micro-structured strong interface, Annales de l'Institut Henri Poincaré (c) Non Linear Analysis, in press. 6. A-L. Bessoud. Multi-materials with strong interface : Young measures formulation. J. Math. Pures et Appliquées, in press. 7. A-L. Bessoud, F. Krasucki, G. Michaille. Variational convergences of energy functionals for elastic materials with ε-thin strong inclusions growing as p(ε), p(ε) going to 1+. in preparation. 8. A-L. Bessoud, F. Krasucki. GMRES Algorithm for Multi-Materials with Strong Interface. C. R. Acad. Sci. Paris, Ser. I. 343 (2006), 297-282. 9. A-L. Bessoud, F. Krasucki. Jonctions entre deux solides : modèles simplifiés et algorithmes de résolution. Congrès de la SMAI, Juin 2007. 10. A-L. Bessoud, F. Krasucki. Jonctions entre deux solides : modèles simplifiés et algorithmes de résolution. Congrès Français de Mécanique, Août 2007.Cette thèse est consacrée à la modélisation d'une structure constituée de l'assemblage de deux solides Ω+ et Ω− à l'aide d'une couche mince (d'épaisseur d'ordre ε) très rigide (d'ordre 1/ε), où ε est un petit paramètre. Différentes situations et considérations sont prises en compte. Dans un premier temps, on se place dans le cadre de l'élasticité linéaire. Une analyse asymptotique formelle conduit à un problème posé sur Ω+UΩ-US où S est l'intersection des frontières . Nous nous intéressons dans cette partie aux deux aspects suivants : - Prise en compte de la géométrie et de la rigidité de la couche intermédiaire : résultats de convergence faible et forte pour des modèles de plaques et de coques ; - Proposition de méthodes de résolution numérique par décomposition de domaine ou avec pénalisation. Nous proposons ensuite une modélisation dans un cadre plus général et obtenons dans le cadre de la Γ-convergence, un modèle en élasticité linéaire non isotrope et un modèle en élasticité non linéaire. Lorsque le matériau dans la couche rigide présente des transitions de phase solide/solide, sa densité d'énergie g possède plusieurs puits de potentiel rendant compte de microstructures. Pour modéliser ces microstructures, il convient de réécrire l'énergie dans la couche en terme de mesures de Young. L'énergie de la structure est alors donnée par une bifonctionnelle ayant pour argument un couple déplacement-mesure de Young. Une des deux fonctions marginales de la fonctionnelle limite nous redonne l'énergie (classique) du modèle limite obtenu précédemment par Γ-convergence . Nous pouvons également réécrire l'énergie de toute la structure en terme de mesures de Young. Nous montrons alors comment les solutions du problème formulé en terme de mesures de Young donnent une description microscopique des solutions classiques. Enfin, lorsque la couche mince a un comportement plastique, des difficultés liées à la croissance linéaire de l'énergie de densité g apparaissent. En s'inspirant des méthodes de régularisation de Norton-Hoff, nous étudions le cas où g est à croissance d'ordre p, 1< p <2, la densité d'énergie f dans le reste de la structure étant à croissance d'ordre 2. Nous obtenons un premier modèle limite lorsque ε tend vers 0. Nous étudions ensuite la Γ-convergence de la fonctionnelle limite obtenue lorsque p tend vers 1. Mots clés : élasticité, multi-matériau, Γ-convergence, analyse asymptotique, mesures de Young
A variational convergence for bifunctionals. Application to a model of strong junction.
International audienceno abstrac
Jonctions fortes entre deux solides: modèles simplifiés et algorithme
Nous étudions un problème modèle non classique de transmission décrivant une multistructure composée de deux solides reliés par une jonction forte. En utilisant une méthode de décomposition de domaines, le problème se ramène à une équation définie sur l'interface. Dans le cas thermique, cette équation est de la forme ( I − G)g = F. On montre que les propriétés de G entraînent la convergence q-superlinéaire de l'algorithme GMRES
Modélisations mathématiques d'un multi-matériau
Cette thèse est consacrée à la modélisation d'une structure constituée de l'assemblage de deux solides + et à l'aide d'une couche mince (d'épaisseur d'ordre ) très rigide (d'ordre 1/ ), où est un petit paramètre. Différentes situations et considérations sont prises en compte. Nous étudions dans le cadre de l'élasticité linéaire isotrope les cas où la couche est de type plaque et de type coque. Une analyse asymptotique conduit à un problème posé sur +U -US où S est l'interface. Nous proposons alors des méthodes de résolution numérique par décomposition de domaine ou avec pénalisation. Nous présentons ensuite une modélisation dans un cadre plus général et obtenons dans le cadre de la convergence, un modèle en élasticité linéaire non isotrope et un modèle en élasticité non linéaire. Lorsque le matériau dans la couche rigide possède des microstructures, sa densité d'énergie g a une structure en puits de potentiel. Pour modéliser ces microstructures, il convient de réécrire l'énergie dans la couche en termes de mesures de Young. L'énergie de la structure est alors donnée par une bifonctionnelle ayant pour argument un couple déplacement-mesure de Young. Une des deux fonctions marginales de la fonctionnelle limite nous redonne l'énergie (classique) du modèle limite obtenu précédemment par convergence. Enfin, on s'intéresse au cas où la couche mince a un comportement plastique. En s'inspirant des méthodes de régularisation de Norton-Hoff, nous étudions le cas où g est à croissance d'ordre p, 1< p <2. Nous obtenons un premier modèle limite lorsque tend vers 0. Nous étudions ensuite la convergence quand p tend vers 1This thesis is concerned with the modeling of a structure made of two bodies + and joined by a very rigid layer of thickness , being a small parameter. Different situations and considerations are taken into account. In linear isotropic elasticity, we are interested in the case when the behavior of the thin layer is that of a plate-like or a shell-like structure. An asymptotic analysis leads to a problem set on +U -US , where S is the interface. Then we propose to solve the problem with a domain decomposition method or with a penalization method. Next we obtain a limit model for the linear anisotropic case and one in a non linear setting in the framework of convergence. When the material in the thin layer posseses microstructures, its energy density g entails a multi-well structure so we rewrite the stored strain energy in the layer in terms of Young measures. A new model is obtained where the elastic energy is a bifunctional of pairs of displacement/Young measure. The classical stored strain energy of the previous model is recovered as to be one of the two marginal maps of this bifunctional. A more difficult situation arises when the thin layer has a plastic behavior. Following Norton-Hoff's regularisation methods, we study the problem when g has growth of order p, 1<2. A first limit model is obtained by letting go to 0. Then we study the convergence of the limit functional when p goes to 1MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF